Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits development of acute myeloid leukemia by concentrating on OSBPL11 | Journal of Nanobiotechnology


  • 1.

    Khaldoyanidi S, Nagorsen D, Stein A, Ossenkoppele G, Subklewe M. Immune biology of acute myeloid leukemia: implications for immunotherapy. J Clin Oncol. 2021;39:419–32.

    PubMed 

    Google Scholar
     

  • 2.

    Du A, Wu X, Gao Y, Jiang B, Wang J, Zhang P, Zhao Q. m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in acute myeloid leukemia. Entrance Immunol. 2021;12:789914.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Brief NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, Daver N. Advances within the therapy of acute myeloid leukemia: new medication and new challenges. Most cancers Discov. 2020;10:506–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Yang X, Wang J. Precision remedy for acute myeloid leukemia. J Hematol Oncol. 2018;11:3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Duncavage EJ, Schroeder MC, O’Laughlin M, Wilson R, MacMillan S, Bohannon A, Kruchowski S, Garza J, Du F, Hughes AEO, et al. Genome sequencing as an alternative choice to cytogenetic evaluation in myeloid cancers. N Engl J Med. 2021;384:924–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, Konopleva M, Dohner H, Letai A, Fenaux P, et al. Azacitidine and venetoclax in beforehand untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Lin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow mesenchymal stem cells: growing older and tissue engineering purposes to reinforce bone therapeutic. Biomaterials. 2019;203:96–110.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Arthur A, Gronthos S. Medical utility of bone marrow mesenchymal stem/stromal cells to restore skeletal tissue. Int J Mol Sci. 2020;21:9759.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 9.

    Forte D, Garcia-Fernandez M, Sanchez-Aguilera A, Stavropoulou V, Fielding C, Martin-Perez D, Lopez JA, Costa ASH, Tronci L, Nikitopoulou E, et al. Bone marrow mesenchymal stem cells assist acute myeloid leukemia bioenergetics and improve antioxidant protection and escape from chemotherapy. Cell Metab. 2020;32:829–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Wu J, Zhang W, Ran Q, Xiang Y, Zhong JF, Li SC, Li Z. The differentiation stability of bone marrow mesenchymal stem cells is essential to hematopoiesis. Stem Cells Int. 2018;2018:1540148.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Attia N, Mashal M. Mesenchymal stem cells: the previous current and future. Adv Exp Med Biol. 2021;1312:107–29.

    PubMed 

    Google Scholar
     

  • 12.

    Tracy SA, Ahmed A, Tigges JC, Ericsson M, Pal AK, Zurakowski D, Fauza DO. A comparability of clinically related sources of mesenchymal stem cell-derived exosomes: bone marrow and amniotic fluid. J Pediatr Surg. 2019;54:86–90.

    PubMed 

    Google Scholar
     

  • 13.

    He Y, Chen D, Yang L, Hou Q, Ma H, Xu X. The therapeutic potential of bone marrow mesenchymal stem cells in untimely ovarian failure. Stem Cell Res Ther. 2018;9:263.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New applied sciences for evaluation of extracellular vesicles. Chem Rev. 2018;118:1917–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, Li G, Tang J, Xiang J. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung most cancers cells through STAT3-induced EMT. Mol Most cancers. 2019;18:40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Yang B, Chen Y, Shi J. Exosome biochemistry and superior nanotechnology for next-generation theranostic platforms. Adv Mater. 2019;31:e1802896.

    PubMed 

    Google Scholar
     

  • 17.

    Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, et al. Progress, alternative, and perspective on exosome isolation—efforts for environment friendly exosome-based theranostics. Theranostics. 2020;10:3684–707.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, et al. Reassessment of exosome composition. Cell. 2019;177:428–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Solar Z, Shi Okay, Yang S, Liu J, Zhou Q, Wang G, Music J, Li Z, Zhang Z, Yuan W. Impact of exosomal miRNA on most cancers biology and scientific purposes. Mol Most cancers. 2018;17:147.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Mikami Y, Philips RL, Sciume G, Petermann F, Meylan F, Nagashima H, Yao C, Davis FP, Brooks SR, Solar HW, et al. MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as unfavourable suggestions regulators downstream of interleukin-23. Immunity. 2021;54:514–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Goodall GJ, Wickramasinghe VO. RNA in most cancers. Nat Rev Most cancers. 2021;21:22–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Mudgapalli N, Nallasamy P, Chava H, Chava S, Pathania AS, Gunda V, Gorantla S, Pandey MK, Gupta SC, Challagundla KB. The position of exosomes and MYC in remedy resistance of acute myeloid leukemia: challenges and alternatives. Mol Features Med. 2019;70:21–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Zhang F, Lu Y, Wang M, Zhu J, Li J, Zhang P, Yuan Y, Zhu F. Exosomes derived from human bone marrow mesenchymal stem cells switch miR-222–3p to suppress acute myeloid leukemia cell proliferation by concentrating on IRF2/INPP4B. Mol Cell Probes. 2020;51:101513.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Xiao H. MiR-7-5p suppresses tumor metastasis of non-small cell lung most cancers by concentrating on NOVA2. Cell Mol Biol Lett. 2019;24:60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Shi Y, Luo X, Li P, Tan J, Wang X, Xiang T, Ren G. miR-7-5p suppresses cell proliferation and induces apoptosis of breast most cancers cells primarily by concentrating on REGgamma. Most cancers Lett. 2015;358:27–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Hu C, Zhu S, Wang J, Lin Y, Ma L, Zhu L, Jiang P, Li Z, Pan W. Schistosoma japonicum MiRNA-7-5p inhibits the expansion and migration of hepatoma cells through cross-species regulation of S-phase kinase-associated protein 2. Entrance Oncol. 2019;9:175.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD. The 2008 revision of the World Well being Group (WHO) classification of myeloid neoplasms and acute leukemia: rationale and essential adjustments. Blood. 2009;114:937–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Jiang D, He Y, Mo Q, Liu E, Li X, Huang L, Zhang Q, Chen F, Li Y, Shao H. PRICKLE1, a Wnt/PCP signaling element, is overexpressed and related to inferior prognosis in acute myeloid leukemia. J Transl Med. 2021;19:211.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Zhao Q, Jiang D, Solar X, Mo Q, Chen S, Chen W, Gui R, Ma X. Biomimetic nanotherapy: core–shell structured nanocomplexes primarily based on the neutrophil membrane for focused remedy of lymphoma. J Nanobiotechnol. 2021;19:1–19.

    CAS 

    Google Scholar
     

  • 30.

    Yao Q, Gao J, Chen F, Li W. Growth and utility of an optimized drop-slide approach for metaphase chromosome spreads in maize. Biotech Histochem. 2020;95:276–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Zhao Q, Solar X, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Building of homologous most cancers cell membrane camouflage in a nano-drug supply system for the therapy of lymphoma. J Nanobiotechnol. 2021;19:8.

    CAS 

    Google Scholar
     

  • 32.

    Qiu X, Liu J, Zheng C, Su Y, Bao L, Zhu B, Liu S, Wang L, Wang X, Wang Y, et al. Exosomes launched from educated mesenchymal stem cells speed up cutaneous wound therapeutic through selling angiogenesis. Cell Prolif. 2020;53:e12830.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Jin Y, Yang Q, Liang L, Ding L, Liang Y, Zhang D, Wu B, Yang T, Liu H, Huang T, et al. Compound kushen injection suppresses human acute myeloid leukaemia by regulating the Prdxs/ROS/Trx1 signalling pathway. J Exp Clin Most cancers Res. 2018;37:277.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Jia Y, Ding X, Zhou L, Zhang L, Yang X. Mesenchymal stem cells-derived exosomal microRNA-139-5p restrains tumorigenesis in bladder most cancers by concentrating on PRC1. Oncogene. 2021;40:246–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Zhao Q, Solar XY, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Building of biomimetic silver nanoparticles within the therapy of lymphoma. Mater Sci Eng C. 2021;119:111648.

    CAS 

    Google Scholar
     

  • 36.

    Li J, Huang X, Huang R, Jiang J, Gui R. Erythrocyte membrane camouflaged graphene oxide for tumor-targeted photothermal-chemotherapy. Carbon. 2019;146:660–70.

    CAS 

    Google Scholar
     

  • 37.

    Li H, Yang C, Shi Y, Zhao L. Exosomes derived from siRNA in opposition to GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology. 2018;16:103.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Jin Y, Yang Q, Liang L, Ding L, Liang Y, Zhang D, Wu B, Yang T, Liu H, Huang T. Compound kushen injection suppresses human acute myeloid leukaemia by regulating the Prdxs/ROS/Trx1 signalling pathway. J Exp Clin Most cancers Res. 2018;37:1–13.


    Google Scholar
     

  • 39.

    Liu A, Lin D, Zhao H, Chen L, Cai B, Lin Okay, Shen SG. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold through lyophilization for bone restore by means of Bmpr2/Acvr2b aggressive receptor-activated Smad pathway. Biomaterials. 2021;272:120718.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Xu YC, Lin YS, Zhang L, Lu Y, Solar YL, Fang ZG, Li ZY, Fan RF. MicroRNAs of bone marrow mesenchymal stem cell-derived exosomes regulate acute myeloid leukemia cell proliferation and apoptosis. Chin Med J. 2020;133:2829–39.

    PubMed 

    Google Scholar
     

  • 41.

    Wallace JA, O’Connell RM. MicroRNAs and acute myeloid leukemia: therapeutic implications and rising ideas. Blood. 2017;130:1290–301.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Yang L, Kong D, He M, Gong J, Nie Y, Tai S, Teng CB. MiR-7 mediates mitochondrial impairment to set off apoptosis and necroptosis in Rhabdomyosarcoma. Biochim Biophys Acta Mol Cell Res. 2020;1867:118826.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Huang Q, Wu YY, Xing SJ, Yu ZW. Impact of miR-7 on resistance of breast most cancers cells to adriamycin through regulating EGFR/PI3K signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23:5285–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Zhang Z, Zhao M, Wang G. Upregulation of microRNA-7 contributes to inhibition of the expansion and metastasis of osteosarcoma cells by means of the inhibition of IGF1R. J Cell Physiol. 2019;234:22195–206.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Solar H, Zhang Z, Luo W, Liu J, Lou Y, Xia S. MiR-7 capabilities as a tumor suppressor by concentrating on the oncogenes TAL1 in T-cell acute lymphoblastic leukemia. Technol Most cancers Res Deal with. 2020;19:1533033820934130.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Kong X, Li G, Yuan Y, He Y, Wu X, Zhang W, Wu Z, Chen T, Wu W, Lobie PE, Zhu T. MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast most cancers cells through concentrating on FAK expression. PLoS ONE. 2012;7:e41523.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Xie J, Chen M, Zhou J, Mo MS, Zhu LH, Liu YP, Gui QJ, Zhang L, Li GQ. miR-7 inhibits the invasion and metastasis of gastric most cancers cells by suppressing epidermal development issue receptor expression. Oncol Rep. 2014;31:1715–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Lehto M, Laitinen S, Chinetti G, Johansson M, Ehnholm C, Staels B, Ikonen E, Olkkonen VM. The OSBP-related protein household in people. J Lipid Res. 2001;42:1203–13.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Jaworski CJ, Moreira E, Li A, Lee R, Rodriguez IR. A household of 12 human genes containing oxysterol-binding domains. Genomics. 2001;78:185–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Olkkonen VM, Levine TP. Oxysterol binding proteins: in multiple place at one time? Biochem Cell Biol. 2004;82:87–98.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Kloudova A, Guengerich FP, Soucek P. The position of oxysterols in human most cancers. Traits Endocrinol Metab. 2017;28:485–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Lengthy NP, Jung KH, Yoon SJ, Anh NH, Nghi TD, Kang YP, Yan HH, Min JE, Hong SS, Kwon SW. Systematic evaluation of cervical most cancers initiation and development uncovers genetic panels for deep learning-based early analysis and proposes novel diagnostic and prognostic biomarkers. Oncotarget. 2017;8:109436–56.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Fabbri L, Chakraborty A, Robert C, Vagner S. The plasticity of mRNA translation throughout most cancers development and remedy resistance. Nat Rev Most cancers. 2021;21:558–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Ediriweera MK, Tennekoon KH, Samarakoon SR. Function of the PI3K/AKT/mTOR signaling pathway in ovarian most cancers: Organic and therapeutic significance. Semin Most cancers Biol. 2019;59:147–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Concentrating on PI3K in most cancers: mechanisms and advances in scientific trials. Mol Most cancers. 2019;18:26.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Yang Q, Jiang W, Hou P. Rising position of PI3K/AKT in tumor-related epigenetic regulation. Semin Most cancers Biol. 2019;59:112–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Zaryouh H, De Pauw I, Baysal H, Peeters M, Vermorken JB, Lardon F, Wouters A. Current insights within the PI3K/Akt pathway as a promising therapeutic goal together with EGFR-targeting brokers to deal with head and neck squamous cell carcinoma. Med Res Rev. 2021;42(1):112–55.

    PubMed 

    Google Scholar
     

  • 58.

    Badura S, Tesanovic T, Pfeifer H, Wystub S, Nijmeijer BA, Liebermann M, Falkenburg JH, Ruthardt M, Ottmann OG. Differential results of selective inhibitors concentrating on the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PLoS ONE. 2013;8:e80070.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Ariston Gabriel AN, Wang F, Jiao Q, Yvette U, Yang X, Al-Ameri SA, Du L, Wang YS, Wang C. The involvement of exosomes within the analysis and therapy of pancreatic most cancers. Mol Most cancers. 2020;19:132.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Yi M, Xu L, Jiao Y, Luo S, Li A, Wu Okay. The position of cancer-derived microRNAs in most cancers immune escape. J Hematol Oncol. 2020;13:25.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Alzahrani FA, El-Magd MA, Abdelfattah-Hassan A, Saleh AA, Saadeldin IM, El-Shetry ES, Badawy AA, Alkarim S. Potential impact of exosomes derived from most cancers stem cells and MSCs on development of DEN-induced HCC in rats. Stem Cells Int. 2018;2018:8058979.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Goel S, Zhang G, Dogra P, Nizzero S, Cristini V, Wang Z, Hu Z, Li Z, Liu X, Shen H, Ferrari M. Sequential deconstruction of composite drug transport in metastatic breast most cancers. Sci Adv. 2020;6:eaba4498.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: idea, design, and purposes. Chem Rev. 2020;120:3787–851.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Comment