Engineered CRISPR-Cas programs for the detection and management of antibiotic-resistant infections | Journal of Nanobiotechnology
Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12 Suppl):S122–9.
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a worldwide multifaceted phenomenon. Pathog Glob Well being. 2015;109(7):309–18.
Watkins RR, Bonomo RA. Overview: world and native impression of antibiotic resistance. Infect Dis Clin North Am. 2016;30(2):313–22.
Esposito S, De Simone G. Replace on the primary MDR pathogens: prevalence and therapy choices. Infez Med. 2017;25(4):301–10.
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, analysis, and improvement of recent antibiotics: the WHO precedence checklist of antibiotic-resistant micro organism and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27.
Rossolini GM, Enviornment F, Pecile P, Pollini S. Replace on the antibiotic resistance disaster. Curr Opin Pharmacol. 2014;18:56–60.
Byrne B, Stack E, Gilmartin N, O’Kennedy R. Antibody-based sensors: ideas, issues and potential for detection of pathogens and related toxins. Sensors (Basel). 2009;9(6):4407–45.
Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, et al. Analytical and medical validation of a microbial cell-free DNA sequencing take a look at for infectious illness. Nat Microbiol. 2019;4(4):663–74.
Khwannimit B, Bhurayanontachai R. The direct prices of intensive care administration and danger components for monetary burden of sufferers with extreme sepsis and septic shock. J Crit Care. 2015;30(5):929–34.
Marchfelder A. Particular focus CRISPR-Cas. RNA Biol. 2013;10(5):655–8.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR supplies acquired resistance in opposition to viruses in prokaryotes. Science. 2007;315(5819):1709–12.
Manghwar H, Lindsey Ok, Zhang X, Jin S. CRISPR/Cas system: latest advances and future prospects for genome modifying. Developments Plant Sci. 2019;24(12):1102–25.
Wang Y, Li S, Liu L, Feng L. Photothermal-responsive conjugated polymer nanoparticles for fast and efficient killing of micro organism. ACS Appl Bio Mater. 2018;1(1):27–32.
De Jong WH, Borm PJ. Drug supply and nanoparticles:functions and hazards. Int J Nanomedicine. 2008;3(2):133–49.
Chen Z, Yuan H, Liang H. Synthesis of multifunctional cationic poly(p-phenylenevinylene) for selectively killing micro organism and lysosome-specific imaging. ACS Appl Mater Interfaces. 2017;9(11):9260–4.
Li Y, Li S, Wang J, Liu G. CRISPR/Cas programs in the direction of next-generation biosensing. Developments Biotechnol. 2019;37(7):730–43.
Pickar-Oliver A, Gersbach CA. The subsequent technology of CRISPR-Cas applied sciences and functions. Nat Rev Mol Cell Biol. 2019;20(8):490–507.
Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel technique to fight antibiotic resistance: a sight into the mixture of CRISPR/Cas9 and nanoparticles. Pharmaceutics. 2021;13(3):352.
Ishino Y, Shinagawa H, Makino Ok, Amemura M, Nakata A. Nucleotide sequence of the iap gene, chargeable for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.
Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes which can be related to DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75.
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered usually interspaced brief palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Studying). 2005;151(Pt 8):2551–61.
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system supplies immunity in Escherichia coli. Nucleic Acids Res. 2011;39(21):9275–82.
Jinek M, Chylinski Ok, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided modifying of bacterial genomes utilizing CRISPR-Cas programs. Nat Biotechnol. 2013;31(3):233–9.
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An up to date evolutionary classification of CRISPR-Cas programs. Nat Rev Microbiol. 2015;13(11):722–36.
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas programs: a burst of sophistication 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.
Makarova KS, Wolf YI, Koonin EV. Classification and nomenclature of CRISPR-Cas programs: the place from right here? Crispr J. 2018;1(5):325–36.
Almendros C, Nobrega FL, McKenzie RE, Brouns SJJ. Cas4-Cas1 fusions drive environment friendly PAM choice and management CRISPR adaptation. Nucleic Acids Res. 2019;47(10):5223–30.
Newire E, Aydin A, Juma S, Enne VI, Roberts AP. Identification of a sort IV-A CRISPR-Cas system situated solely on IncHI1B/IncFIB plasmids in Enterobacteriaceae. Entrance Microbiol. 2020;11:1937.
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573.
Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJ. CRISPR-Cas: adapting to alter. Science. 2017;356(6333):eaal5056.
Amitai G, Sorek R. CRISPR-Cas adaptation: insights into the mechanism of motion. Nat Rev Microbiol. 2016;14(2):67–76.
Globyte V, Lee SH, Bae T, Kim JS, Joo C. CRISPR/Cas9 searches for a protospacer adjoining motif by lateral diffusion. Embo J. 2019;38(4):e99466.
Strich JR, Chertow DS. CRISPR-Cas biology and its utility to infectious ailments. J Clin Microbiol. 2019;57(4):e01307-18.
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: back and forth. Cell. 2018;172(6):1239–59.
Barrangou R. CRISPR-Cas programs and RNA-guided interference. Wiley Interdiscip Rev RNA. 2013;4(3):267–78.
Chylinski Ok, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of sort II CRISPR-Cas programs. Nucleic Acids Res. 2014;42(10):6091–105.
van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic foundation of CRISPR-Cas programs. Nat Rev Microbiol. 2014;12(7):479–92.
Bland C, Ramsey TL, Sabree F, Lowe M, Brown Ok, Kyrpides NC, et al. CRISPR recognition instrument (CRT): a instrument for computerized detection of clustered usually interspaced palindromic repeats. BMC Bioinform. 2007;8:209.
Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an replace of CRISRFinder, features a transportable model, enhanced efficiency and integrates seek for Cas proteins. Nucleic Acids Res. 2018;46(W1):W246–51.
Edgar RC. PILER-CR: quick and correct identification of CRISPR repeats. BMC Bioinform. 2007;8:18.
Biswas A, Staals RH, Morales SE, Fineran PC, Brown CM. CRISPRDetect: a versatile algorithm to outline CRISPR arrays. BMC Genomics. 2016;17:356.
Mitrofanov A, Alkhnbashi OS, Shmakov SA, Makarova KS, Koonin EV, Backofen R. CRISPRidentify: identification of CRISPR arrays utilizing machine studying strategy. Nucleic Acids Res. 2021;49(4):e20.
Moller AG, Liang C. MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes. PeerJ. 2017;5:e3788.
Skennerton CT, Imelfort M, Tyson GW. Crass: identification and reconstruction of CRISPR from unassembled metagenomic information. Nucleic Acids Res. 2013;41(10):e105.
T. SC. MinCED: Mining CRISPRs in environmental datasets.2016. https://github.com/ctSkennerton/minced/tree/grasp. Accessed 16 Sep 2020.
Rho M, Wu YW, Tang H, Doak TG, Ye Y. Numerous CRISPRs evolving in human microbiomes. PLoS Genet. 2012;8(6):e1002441.
Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ. CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas Loci. Crispr J. 2020;3(6):462–9.
Alkhnbashi OS, Shah SA, Garrett RA, Saunders SJ, Costa F, Backofen R. Characterizing chief sequences of CRISPR loci. Bioinformatics. 2016;32(17):i576–85.
Biswas A, Fineran PC, Brown CM. Correct computational prediction of the transcribed strand of CRISPR non-coding RNAs. Bioinformatics. 2014;30(13):1805–13.
Solar J, Liu H, Liu J, Cheng S, Peng Y, Zhang Q, et al. CRISPR-Native: a neighborhood single-guide RNA (sgRNA) design instrument for non-reference plant genomes. Bioinformatics. 2019;35(14):2501–3.
Perez AR, Pritykin Y, Vidigal JA, Chhangawala S, Zamparo L, Leslie CS, et al. GuideScan software program for improved single and paired CRISPR information RNA design. Nat Biotechnol. 2017;35(4):347–9.
Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME, et al. Optimized libraries for CRISPR-Cas9 genetic screens with a number of modalities. Nat Commun. 2018;9(1):5416.
Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximise exercise and decrease off-target results of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184–91.
Störtz F, Minary P. crisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Res. 2021;49(D1):D855–61.
Cui Y, Liao X, Peng S, Tang T, Huang C, Yang C. OffScan: a common and quick CRISPR off-target websites detection instrument. BMC Genomics. 2020;21(Suppl 1):872.
Greene AC. CRISPR-based antibacterials: reworking bacterial protection into offense. Developments Biotechnol. 2018;36(2):127–30.
Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, et al. Cytotoxic chromosomal concentrating on by CRISPR/Cas programs can reshape bacterial genomes and expel or transform pathogenicity islands. PLoS Genet. 2013;9(4):e1003454.
Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials utilizing effectively delivered RNA-guided nucleases. Nat Biotechnol. 2014;32(11):1141–5.
Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to supply sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–50.
Gholizadeh P, Köse Ş, Dao S, Ganbarov Ok, Tanomand A, Dal T, et al. How CRISPR-Cas system might be used to fight antimicrobial resistance. Infect Drug Resist. 2020;13:1111–21.
Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. CRISPR interference can stop pure transformation and virulence acquisition throughout in vivo bacterial an infection. Cell Host Microbe. 2012;12(2):177–86.
Gomaa AA, Klumpe HE, Luo ML, Selle Ok, Barrangou R, Beisel CL. Programmable elimination of bacterial strains by use of genome-targeting CRISPR-Cas programs. mBio. 2014;5(1):e00928-13.
Park JY, Moon BY, Park JW, Thornton JA, Park YH, Search engine optimization KS. Genetic engineering of a temperate phage-based supply system for CRISPR/Cas9 antimicrobials in opposition to Staphylococcus aureus. Sci Rep. 2017;7:44929.
Kiga Ok, Tan XE, Ibarra-Chávez R, Watanabe S, Aiba Y, Sato’o Y, et al. Improvement of CRISPR-Cas13a-based antimicrobials able to sequence-specific killing of goal micro organism. Nat Commun. 2020;11(1):2934.
Selle Ok, Fletcher JR, Tuson H, Schmitt DS, McMillan L, Vridhambal GS, et al. In vivo concentrating on of clostridioides difficile utilizing phage-delivered CRISPR-Cas3 antimicrobials. mBio. 2020;11(2):e00019-20.
Kang YK, Kwon Ok, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral genome modifying based mostly on a polymer-derivatized CRISPR nanocomplex for concentrating on bacterial pathogens and antibiotic resistance. Bioconjug Chem. 2017;28(4):957–67.
Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant micro organism. Proc Natl Acad Sci U S A. 2015;112(23):7267–72.
Kim JS, Cho DH, Park M, Chung WJ, Shin D, Ko KS, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016;26(2):394–401.
Tagliaferri TL, Guimarães NR, Pereira MPM, Vilela LFF, Horz HP, Dos Santos SG, et al. Exploring the potential of CRISPR-Cas9 beneath difficult situations: going through high-copy plasmids and counteracting beta-lactam resistance in medical strains of enterobacteriaceae. Entrance Microbiol. 2020;11:578.
Liu H, Li H, Liang Y, Du X, Yang C, Yang L, et al. Phage-delivered sensitisation with subsequent antibiotic therapy reveals sustained impact in opposition to antimicrobial resistant micro organism. Theranostics. 2020;10(14):6310–21.
Hao M, He Y, Zhang H, Liao XP, Liu YH, Solar J, et al. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant Enterobacteriaceae. Antimicrob Brokers Chemother. 2020;64(9):e00843-20.
Wang P, He D, Li B, Guo Y, Wang W, Luo X, et al. Eliminating mcr-1-harbouring plasmids in medical isolates utilizing the CRISPR/Cas9 system. J Antimicrob Chemother. 2019;74(9):2559–65.
Lauritsen I, Porse A, Sommer MOA, Nørholm MHH. A flexible one-step CRISPR-Cas9 based mostly strategy to plasmid-curing. Microb Cell Truth. 2017;16(1):135.
Rodrigues M, McBride SW, Hullahalli Ok, Palmer KL, Duerkop BA. Conjugative supply of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob Brokers Chemother. 2019;63(11):e01454-19.
Wanner S, Schade J, Keinhörster D, Weller N, George SE, Kull L, et al. Wall teichoic acids mediate elevated virulence in Staphylococcus aureus. Nat Microbiol. 2017;2:16257.
Wu X, Zha J, Koffas MAG, Dordick JS. Decreasing Staphylococcus aureus resistance to lysostaphin utilizing CRISPR-dCas9. Biotechnol Bioeng. 2019;116(12):3149–59.
Wu ZY, Huang YT, Chao WC, Ho SP, Cheng JF, Liu PY. Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome modifying. J Adv Res. 2019;18:61–9.
Solar Q, Wang Y, Dong N, Shen L, Zhou H, Hu Y, et al. Software of CRISPR/Cas9-based genome modifying in learning the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrob Brokers Chemother. 2019;63(7):e00113-19.
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular organic research. Lancet Infect Dis. 2016;16(2):161–8.
Dong H, Xiang H, Mu D, Wang D, Wang T. Exploiting a conjugative CRISPR/Cas9 system to eradicate plasmid harbouring the mcr-1 gene from Escherichia coli. Int J Antimicrob Brokers. 2019;53(1):1–8.
Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system. Infect Drug Resist. 2020;13:1171–8.
Qiu H, Gong J, Butaye P, Lu G, Huang Ok, Zhu G, et al. CRISPR/Cas9/sgRNA-mediated focused gene modification confirms the cause-effect relationship between gyrA mutation and quinolone resistance in Escherichia coli. FEMS Microbiol Lett. 2018;365(13):3.
Worth VJ, Huo W, Sharifi A, Palmer KL. CRISPR-Cas and restriction-modification act additively in opposition to conjugative antibiotic resistance plasmid switch in Enterococcus faecalis. mSphere. 2016;1(3):e00064-16.
Kiga Ok, Tan XE, Ibarra-Chavez R, Watanabe S, Aiba Y, Sato’o Y, et al. Improvement of CRISPR-Cas13a-based antimicrobials able to sequence-specific killing of goal micro organism. Nat Commun. 2020;11(1):2934.
Le S, He X, Tan Y, Huang G, Zhang L, Lux R, et al. Mapping the tail fiber because the receptor binding protein chargeable for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS ONE. 2013;8(7):e68562.
Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U. Extending the host vary of bacteriophage particles for DNA transduction. Mol Cell. 2017;66(5):721-8.e3.
Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, et al. CRISPR/Cas9-based genome modifying for illness modeling and remedy: challenges and alternatives for nonviral supply. Chem Rev. 2017;117(15):9874–906.
Angélica D, Luis DV, Noel R, María C, George C, Ramaz Ok, et al. Antimicrobial exercise of poly(ester urea) electrospun fibers loaded with bacteriophages. Fibers. 2018;6(2):33.
Mohtaram NK, Ko J, Carlson M, Jun MB, Willerth SM, editors. Nanofabrication of electrospun fibers for managed launch of retinoic acid. In: Proceedings of the eighth worldwide convention on micromanufacturing; 2013.
Chadha P, Katare OP, Chhibber S. Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns. 2017;43(7):1532–43.
Colom J, Cano-Sarabia M, Otero J, Cortés P, Maspoch D, Llagostera M. Liposome-Encapsulated bacteriophages for enhanced oral phage remedy in opposition to Salmonella spp. Appl Environ Microbiol. 2015;81(14):4841–9.
Singla S, Harjai Ok, Katare OP, Chhibber S. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS ONE. 2016;11(4):e0153777.
Abdelsattar AS, Abdelrahman F, Dawoud A, Connerton IF, El-Shibiny A. Encapsulation of E. coli phage ZCEC5 in chitosan-alginate beads as a supply system in phage remedy. AMB Categorical. 2019;9(1):87.
Cobb LH, Park J, Swanson EA, Beard MC, McCabe EM, Rourke AS, et al. CRISPR-Cas9 modified bacteriophage for therapy of Staphylococcus aureus induced osteomyelitis and gentle tissue an infection. PLoS ONE. 2019;14(11):e0220421.
Esteban PP, Jenkins AT, Arnot TC. Elucidation of the mechanisms of motion of Bacteriophage Ok/nano-emulsion formulations in opposition to S. aureus through measurement of particle dimension and zeta potential. Colloids Surf B Biointerfaces. 2016;139:87–94.
Knudsen KB, Northeved H, Kumar PE, Permin A, Gjetting T, Andresen TL, et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 2015;11(2):467–77.
Chang HI, Yeh MK. Scientific improvement of liposome-based medication: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60.
Yin H, Kauffman KJ, Anderson DG. Supply applied sciences for genome modifying. Nat Rev Drug Discov. 2017;16(6):387–99.
Zhang P, Draz MS. Practical nanomaterial for theranostic medication. Curr Prime Med Chem. 2019;19(27):2447–8.
Shen H, Huang X, Min J, Le S, Wang Q, Wang X, et al. Nanoparticle supply programs for DNA/RNA and their Potential functions in nanomedicine. Curr Prime Med Chem. 2019;19(27):2507–23.
Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, et al. Nanoparticle-mediated systemic supply of siRNA for therapy of cancers and viral infections. Theranostics. 2014;4(9):872–92.
Riley MK, Vermerris W. Current advances in nanomaterials for gene delivery-a evaluate. Nanomaterials. 2017;7(5):94.
Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, et al. Way forward for human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as secure vaccine supply autos. Skilled Rev Vaccines. 2018;17(3):217–27.
Shi Y, Huang G. Current developments of biodegradable and biocompatible supplies based mostly micro/nanoparticles for delivering macromolecular therapeutics. Crit Rev Ther Drug Provider Syst. 2009;26(1):29–84.
Tao Y, Yi Ok, Hu H, Shao D, Li M. Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome modifying. J Mater Chem B. 2021;9(1):94–100.
Suzuki Y, Onuma H, Sato R, Sato Y, Hashiba A, Maeki M, et al. Lipid nanoparticles loaded with ribonucleoprotein-oligonucleotide complexes synthesized utilizing a microfluidic machine exhibit strong genome modifying and hepatitis B virus inhibition. J Management Launch. 2021;330:61–71.
Monk IR, Shah IM, Xu M, Tan MW, Foster TJ. Remodeling the untransformable: utility of direct transformation to govern genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio. 2012;3(2):e00277-11.
Ram G, Ross HF, Novick RP, Rodriguez-Pagan I, Jiang D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial brokers that treatment infections in mice. Nat Biotechnol. 2018;36(10):971–6.
Hamilton TA, Pellegrino GM, Therrien JA, Ham DT, Bartlett PC, Karas BJ, et al. Environment friendly inter-species conjugative switch of a CRISPR nuclease for focused bacterial killing. Nat Commun. 2019;10(1):4544.
Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sørensen SJ, et al. Broad host vary plasmids can invade an unexpectedly numerous fraction of a soil bacterial group. ISME J. 2015;9(4):934–45.
Kozlowicz BK, Dworkin M, Dunny GM. Pheromone-inducible conjugation in Enterococcus faecalis: a mannequin for the evolution of organic complexity? Int J Med Microbiol. 2006;296(2–3):141–7.
Hirt H, Greenwood-Quaintance KE, Karau MJ, Until LM, Kashyap PC, Patel R, et al. Enterococcus faecalis intercourse pheromone cCF10 enhances conjugative plasmid switch in vivo. mBio. 2018;9(1):e0003718.
Reuter A, Hilpert C, Dedieu-Berne A, Lematre S, Gueguen E, Launay G, et al. Focused-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas programs obtain strain-specific antibacterial exercise. Nucleic Acids Res. 2021;49(6):3584–98.
Miller JB, Zhang S, Kos P, Xiong H, Zhou Ok, Perelman SS, et al. Non-viral CRISPR/Cas gene modifying in vitro and in vivo enabled by artificial nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl. 2017;56(4):1059–63.
Gholizadeh P, Aghazadeh M, Asgharzadeh M, Kafil HS. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. Eur J Clin Microbiol Infect Dis. 2017;36(11):2043–51.
Palmer KL, Gilmore MS. Multidrug-resistant enterococci lack CRISPR-cas. mBio. 2010;1(4):e00227-10.
Pourcel C, Salvignol G, Vergnaud G. CRISPR parts in Yersinia pestis purchase new repeats by preferential uptake of bacteriophage DNA, and supply extra instruments for evolutionary research. Microbiology. 2005;151(Pt 3):653–63.
Garneau JE, Dupuis M, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.
Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene switch in staphylococci by concentrating on DNA. Science. 2008;322(5909):1843–5.
Guo X, Wang Y, Duan G, Xue Z, Wang L, Wang P, et al. Detection and evaluation of CRISPRs of Shigella. Curr Microbiol. 2015;70(1):85–90.
Toro M, Cao G, Ju W, Allard M, Barrangou R, Zhao S, et al. Affiliation of clustered usually interspaced brief palindromic repeat (CRISPR) parts with particular serotypes and virulence potential of shiga toxin-producing Escherichia coli. Appl Environ Microbiol. 2014;80(4):1411–20.
García-Gutiérrez E, Almendros C, Mojica FJ, Guzmán NM, García-Martínez J. CRISPR content material correlates with the pathogenic potential of Escherichia coli. PLoS ONE. 2015;10(7):e0131935.
Hong L, Zhang B, Duan G, Liang W, Wang Y, Chen S, et al. Position of CRISPR/Cas programs in drugresistance and virulence and the impact of IS600 on the expression of cse2 in Shigella. Wei Sheng Wu Xue Bao. 2016;56(12):1912–23.
Lengthy J, Xu Y, Ou L, Yang H, Xi Y, Chen S, et al. Polymorphism of Sort I-F CRISPR/Cas system in Escherichia coli of phylogenetic group B2 and its utility in genotyping. Infect Genet Evol. 2019;74:103916.
Solar H, Li Y, Shi X, Lin Y, Qiu Y, Zhang J, et al. Affiliation of CRISPR/Cas evolution with Vibrio parahaemolyticus virulence components and genotypes. Foodborne Pathog Dis. 2015;12(1):68–73.
Li L, Wong HC, Nong W, Cheung MK, Regulation PT, Kam KM, et al. Comparative genomic evaluation of medical and environmental strains supplies perception into the pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics. 2014;15(1):1135.
Yu LH, Teh CSJ, Yap KP, Ung EH, Thong KL. Comparative genomic supplies perception into the virulence and genetic variety of Vibrio parahaemolyticus related to shrimp acute hepatopancreatic necrosis illness. Infect Genet Evol. 2020;83:104347.
Zheng Z, Zhang Y, Liu Z, Dong Z, Xie C, Bravo A, et al. The CRISPR-Cas programs had been selectively inactivated throughout evolution of Bacillus cereus group for adaptation to numerous environments. ISME J. 2020;14(6):1479–93.
Leungtongkam U, Thummeepak R, Kitti T, Tasanapak Ok, Wongwigkarn J, Types KM, et al. Genomic evaluation reveals excessive virulence and antibiotic resistance amongst phage prone Acinetobacter baumannii. Sci Rep. 2020;10(1):16154.
Solbiati J, Duran-Pinedo A, Godoy Rocha F, Gibson FC third, Frias-Lopez J. Virulence of the pathogen Porphyromonas gingivalis is managed by the CRISPR-Cas protein Cas3. mSystems. 2020;5(5):e00852-20.
Li R, Fang L, Tan S, Yu M, Li X, He S, et al. Sort I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity. Cell Res. 2016;26(12):1273–87.
Cui L, Wang X, Huang D, Zhao Y, Feng J, Lu Q, et al. CRISPR-cas3 of salmonella upregulates bacterial biofilm formation and virulence to host cells by concentrating on quorum-sensing programs. Pathogens. 2020;9(1):53.
Sampson TR, Weiss DS. CRISPR-Cas programs: new gamers in gene regulation and bacterial physiology. Entrance Cell Infect Microbiol. 2014;4:37.
Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knegt G, Hamersma M, et al. A novel hyperlink between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis. 2013;32(2):207–26.
Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G, Dai M, et al. The involvement of the Cas9 gene in virulence of Campylobacter jejuni. Entrance Cell Infect Microbiol. 2018;8:285.
Sashital DG. Pathogen detection within the CRISPR-Cas period. Genome Med. 2018;10(1):32.
Zhao X, Zhang W, Qiu X, Mei Q, Luo Y, Fu W. Speedy and delicate exosome detection with CRISPR/Cas12a. Anal Bioanal Chem. 2020;412(3):601–9.
Jiao J, Kong Ok, Han J, Music S, Bai T, Music C, et al. Subject detection of a number of RNA viruses/viroids in apple utilizing a CRISPR/Cas12a-based visible assay. Plant Biotechnol J. 2021;19(2):394–405.
Pattarawarapan M, Nangola S, Cressey TR, Tayapiwatana C. Improvement of a one-step immunochromatographic strip take a look at for the fast detection of nevirapine (NVP), a generally used antiretroviral drug for the therapy of HIV/AIDS. Talanta. 2007;71(1):462–70.
Ma L, Peng L, Yin L, Liu G, Man S. CRISPR-Cas12a-powered dual-mode biosensor for ultrasensitive and cross-validating detection of pathogenic micro organism. ACS Sens. 2021;6(8):2920–7.
Spoelstra WK, Jacques JM, Gonzalez-Linares R, Nobrega FL, Haagsma AC, Dogterom M, et al. CRISPR-based DNA and RNA detection with liquid-liquid part separation. Biophys J. 2021;120(7):1198–209.
Ding X, Yin Ok, Li Z, Lalla RV, Ballesteros E, Sfeir MM, et al. Ultrasensitive and visible detection of SARS-CoV-2 utilizing all-in-one twin CRISPR-Cas12a assay. Nat Commun. 2020;11(1):4711.
Yuan C, Tian T, Solar J, Hu M, Wang X, Xiong E, et al. Common and naked-eye gene detection platform based mostly on the clustered usually interspaced brief palindromic Repeats/Cas12a/13a system. Anal Chem. 2020;92(5):4029–37.
Bikkarolla SK, Nordberg V, Rajer F, Müller V, Kabir MH, Kk S, et al. Optical DNA mapping mixed with Cas9-targeted resistance gene identification for fast monitoring of resistance plasmids in a neonatal intensive care unit outbreak. mBio. 2019;10(4):e00347-19.
Nalefski EA, Patel N, Leung PJY, Islam Z, Kooistra RM, Parikh I, et al. Kinetic evaluation of Cas12a and Cas13a RNA-Guided nucleases for improvement of improved CRISPR-Based mostly diagnostics. iScience. 2021;24(9):102996.
Quan J, Langelier C, Kuchta A, Batson J, Teyssier N, Lyden A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019;47(14):e83.
Sander JD, Joung JK. CRISPR-Cas programs for modifying, regulating and concentrating on genomes. Nat Biotechnol. 2014;32(4):347–55.
Nilsson AN, Emilsson G, Nyberg LK, Noble C, Stadler LS, Fritzsche J, et al. Aggressive binding-based optical DNA mapping for quick identification of micro organism–multi-ligand switch matrix idea and experimental functions on Escherichia coli. Nucleic Acids Res. 2014;42(15):e118.
Nyberg LK, Persson F, Berg J, Bergström J, Fransson E, Olsson L, et al. A single-step aggressive binding assay for mapping of single DNA molecules. Biochem Biophys Res Commun. 2012;417(1):404–8.
Müller V, Rajer F, Frykholm Ok, Nyberg LK, Quaderi S, Fritzsche J, et al. Direct identification of antibiotic resistance genes on single plasmid molecules utilizing CRISPR/Cas9 together with optical DNA mapping. Sci Rep. 2016;6:37938.
Abid HZ, Younger E, McCaffrey J, Raseley Ok, Varapula D, Wang HY, et al. Personalized optical mapping by CRISPR-Cas9 mediated DNA labeling with a number of sgRNAs. Nucleic Acids Res. 2021;49(2):e8.
Huang M, Zhou X, Wang H, Xing D. Clustered usually interspaced brief palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem. 2018;90(3):2193–200.
Solar X, Wang Y, Zhang L, Liu S, Zhang M, Wang J, et al. CRISPR-Cas9 triggered two-step isothermal amplification technique for E. coli O157:H7 detection based mostly on a metal-organic framework platform. Anal Chem. 2020;92(4):3032–41.
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a goal binding unleashes indiscriminate single-stranded DNase exercise. Science. 2018;360(6387):436–9.
Ai JW, Zhou X, Xu T, Yang M, Chen Y, He GQ, et al. CRISPR-based fast and ultra-sensitive diagnostic take a look at for Mycobacterium tuberculosis. Emerg Microbes Infect. 2019;8(1):1361–9.
Xiao G, Zhang S, Liang Z, Li G, Fang M, Liu Y, et al. Identification of Mycobacterium abscessus species and subspecies utilizing the Cas12a/sgRNA-based nucleic acid detection platform. Eur J Clin Microbiol Infect Dis. 2020;39(3):551–8.
Lyu C, Shi H, Cui Y, Li M, Yan Z, Yan L, et al. CRISPR-based biosensing is potential for fast and delicate analysis of pediatric tuberculosis. Int J Infect Dis. 2020;101:183–7.
Bonini A, Poma N, Vivaldi F, Biagini D, Bottai D, Tavanti A, et al. A label-free impedance biosensing assay based mostly on CRISPR/Cas12a collateral exercise for bacterial DNA detection. J Pharm Biomed Anal. 2021;204:114268.
Curti LA, Pereyra-Bonnet F, Repizo GD, Fay JV, Salvatierra Ok, Blariza MJ, et al. CRISPR-based platform for carbapenemases and rising viruses detection utilizing Cas12a (Cpf1) effector nuclease. Emerg Microbes Infect. 2020;9(1):1140–8.
Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362(6416):839–42.
Music F, Wei Y, Wang P, Ge X, Li C, Wang A, et al. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based common bacterial diagnostic platform. Biosens Bioelectron. 2021;185:113262.
Ge X, Meng T, Tan X, Wei Y, Tao Z, Yang Z, et al. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosens Bioelectron. 2021;189:113350.
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012.
Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60–7.
Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Subject-deployable viral diagnostics utilizing CRISPR-Cas13. Science. 2018;360(6387):444–8.
Shen J, Zhou X, Shan Y, Yue H, Huang R, Hu J, et al. Delicate detection of a bacterial pathogen utilizing allosteric probe-initiated catalysis and CRISPR-Cas13a amplification response. Nat Commun. 2020;11(1):267.
Flashner Y, Fisher M, Tidhar A, Mechaly A, Gur D, Halperin G, et al. The seek for early markers of plague: proof for accumulation of soluble Yersinia pestis LcrV in bubonic and pneumonic mouse fashions of illness. FEMS Immunol Med Microbiol. 2010;59(2):197–206.
Schultzhaus Z, Wang Z, Stenger D. Systematic evaluation, identification, and use of CRISPR/Cas13a-associated crRNAs for delicate and particular detection of the lcrV gene of Yersinia pestis. Diagn Microbiol Infect Dis. 2021;99(3):115275.
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug supply and sensor functions. Int J Nanomedicine. 2017;12:5421–31.
Boken J, Soni SK, Kumar D. Microfluidic synthesis of nanoparticles and their biosensing functions. Crit Rev Anal Chem. 2016;46(6):538–61.
Draz MS, Shafiee H. Functions of gold nanoparticles in virus detection. Theranostics. 2018;8(7):1985.
Draz MS, Tang YW, Zhang P. Bio-nanoparticles: nanoscale probes for nanoscale pathogens. twenty first Century nanoscience–a handbook. CRC Press; 2020. p. 20-1–20-23.
Lengthy L, Liu J, Lu Ok, Zhang T, Xie Y, Ji Y, et al. Extremely delicate and strong peroxidase-like exercise of Au-Pt core/shell nanorod-antigen conjugates for measles virus analysis. J Nanobiotechnology. 2018;16(1):46.
Chou TC, Hsu W, Wang CH, Chen YJ, Fang JM. Speedy and particular influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. J Nanobiotechnology. 2011;9:52.
Ganganboina AB, Chowdhury AD, Khoris IM, Doong RA, Li TC, Hara T, et al. Hole magnetic-fluorescent nanoparticles for dual-modality virus detection. Biosens Bioelectron. 2020;170:112680.
Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug supply and imaging: a promising avenue for most cancers remedy and analysis utilizing focused useful nanoparticles. Int J Most cancers. 2007;120(12):2527–37.
Jin KT, Yao JY, Ying XJ, Lin Y, Chen YF. Nanomedicine and Early Most cancers Analysis: Molecular Imaging utilizing Fluorescence Nanoparticles. Curr Prime Med Chem. 2020;20(30):2737–61.
Gu H, Xu Ok, Xu C, Xu B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun. 2006;9:941–9.
Cheng Y, Liu Y, Huang J, Li Ok, Zhang W, Xian Y, et al. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for fast detection of Escherichia coli. Talanta. 2009;77(4):1332–6.
Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based mostly on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–81.
Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based technique for rationally assembling nanoparticles into macroscopic supplies. Nature. 1996;382(6592):607–9.
Hu M, Yuan C, Tian T, Wang X, Solar J, Xiong E, et al. Single-step, salt-aging-free, and thiol-free freezing development of aunp-based bioprobes for advancing CRISPR-based diagnostics. J Am Chem Soc. 2020;142(16):7506–13.
Kim H, Lee S, Search engine optimization HW, Kang B, Kang T. Clustered usually interspaced brief palindromic repeats-mediated surface-enhanced raman scattering assay for multidrug-resistant micro organism. ACS Nano. 2020;14(12):17241–53.
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, et al. Current and way forward for surface-enhanced raman scattering. ACS Nano. 2020;14(1):28–117.
Wang C, Meloni MM, Wu X, Zhuo M, He T, Wang J, et al. Magnetic plasmonic particles for SERS-based micro organism sensing: a evaluate. AIP Adv. 2019;9(1):010701.
Moraes Silva S, Tavallaie R, Sandiford L, Tilley RD, Gooding JJ. Gold coated magnetic nanoparticles: from preparation to floor modification for analytical and biomedical functions. Chem Commun. 2016;52(48):7528–40.
Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and extremely particular lateral move assays for point-of-care analysis. ACS Nano. 2021;15(3):3593–611.
Goudarzi S, Ahmadi A, Farhadi M, Kamrava SK, Saghafi S, Omidfar Ok. Improvement of a brand new immunochromatographic assay utilizing gold nanoparticles for screening of IgA deficiency. Iran J Allergy Bronchial asthma Immunol. 2015;14(1):105–12.
Mukama O, Wu J, Li Z, Liang Q, Yi Z, Lu X, et al. An ultrasensitive and particular point-of-care CRISPR/Cas12 based mostly lateral move biosensor for the fast detection of nucleic acids. Biosens Bioelectron. 2020;159:112143.
Qiu E, Jin S, Xiao Z, Chen Q, Wang Q, Liu H, et al. CRISPR-based detection of Helicobacter pylori in stool samples. Helicobacter. 2021;26(4):e12828.
You Y, Zhang P, Wu G, Tan Y, Zhao Y, Cao S, et al. Extremely particular and delicate detection of yersinia pestis by transportable Cas12a-UPTLFA platform. Entrance Microbiol. 2021;12:700016.
Wang X, Xiong E, Tian T, Cheng M, Lin W, Wang H, et al. Clustered usually interspaced brief palindromic repeats/Cas9-mediated lateral move nucleic acid assay. ACS Nano. 2020;14(2):2497–508.
Bogers JFM, Berghuis NF, Busker RW, van Booma A, Paauw A, van Leeuwen HC. Shiny fluorescent nucleic acid detection with CRISPR-Cas12a and poly(thymine) templated copper nanoparticles. Biol Strategies Protoc. 2021;6(1):bpaa020.
Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. Encapsulation and supply of therapeutic phages. Appl Environ Microbiol. 2020;87(5):e01979-20.
Kim HY, Chang RYK, Morales S, Chan HK. Bacteriophage-delivering hydrogels: present progress in combating antibiotic resistant bacterial an infection. Antibiotics. 2021;10(2):130.
Sampson TR, Weiss DS. Cas9-dependent endogenous gene regulation is required for bacterial virulence. Biochem Soc Trans. 2013;41(6):1407–11.
Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, et al. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and cellular genetic parts as main elements of the accent genome. BMC Genomics. 2013;14:47.
Sesto N, Touchon M, Andrade JM, Kondo J, Rocha EP, Arraiano CM, et al. A PNPase dependent CRISPR System in Listeria. PLoS Genet. 2014;10(1):e1004065.
Gholizadeh P, Aghazadeh M, Ghotaslou R, Ahangarzadeh Rezaee M, Pirzadeh T, Köse Ş, et al. CRISPR-cas system within the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis. Virulence. 2020;11(1):1257–67.
Tang B, Gong T, Zhou X, Lu M, Zeng J, Peng X, et al. Deletion of cas3 gene in Streptococcus mutans impacts biofilm formation and will increase fluoride sensitivity. Arch Oral Biol. 2019;99:190–7.
Zhang A, Chen J, Gong T, Lu M, Tang B, Zhou X, et al. Deletion of csn2 gene impacts acid tolerance and exopolysaccharide synthesis in Streptococcus mutans. Mol Oral Microbiol. 2020;35(5):211–21.
Vasquez-Rifo A, Veksler-Lublinsky I, Cheng Z, Ausubel FM, Ambros V. The Pseudomonas aeruginosa accent genome parts affect virulence in the direction of Caenorhabditis elegans. Genome Biol. 2019;20(1):270.
Borges AL, Castro B, Govindarajan S, Solvik T, Escalante V, Bondy-Denomy J. Bacterial alginate regulators and phage homologs repress CRISPR-Cas immunity. Nat Microbiol. 2020;5(5):679–87.
Spencer BL, Deng L, Patras KA, Burcham ZM, Sanches GF, Nagao PE, et al. Cas9 contributes to group B streptococcal colonization and illness. Entrance Microbiol. 2019;10:1930.
Liao W, Liu Y, Chen C, Li J, Du F, Lengthy D, et al. Distribution of CRISPR-Cas programs in medical carbapenem-resistant klebsiella pneumoniae strains in a chinese language tertiary hospital and its potential relationship with virulence. Microb Drug Resist. 2020;26(6):630–6.