Engineered CRISPR-Cas programs for the detection and management of antibiotic-resistant infections | Journal of Nanobiotechnology
43 mins read

Engineered CRISPR-Cas programs for the detection and management of antibiotic-resistant infections | Journal of Nanobiotechnology


  • 1.

    Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12 Suppl):S122–9.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 2.

    Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a worldwide multifaceted phenomenon. Pathog Glob Well being. 2015;109(7):309–18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Watkins RR, Bonomo RA. Overview: world and native impression of antibiotic resistance. Infect Dis Clin North Am. 2016;30(2):313–22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Esposito S, De Simone G. Replace on the primary MDR pathogens: prevalence and therapy choices. Infez Med. 2017;25(4):301–10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, analysis, and improvement of recent antibiotics: the WHO precedence checklist of antibiotic-resistant micro organism and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Rossolini GM, Enviornment F, Pecile P, Pollini S. Replace on the antibiotic resistance disaster. Curr Opin Pharmacol. 2014;18:56–60.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 7.

    Byrne B, Stack E, Gilmartin N, O’Kennedy R. Antibody-based sensors: ideas, issues and potential for detection of pathogens and related toxins. Sensors (Basel). 2009;9(6):4407–45.

    CAS 

    Google Scholar
     

  • 8.

    Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, et al. Analytical and medical validation of a microbial cell-free DNA sequencing take a look at for infectious illness. Nat Microbiol. 2019;4(4):663–74.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 9.

    Khwannimit B, Bhurayanontachai R. The direct prices of intensive care administration and danger components for monetary burden of sufferers with extreme sepsis and septic shock. J Crit Care. 2015;30(5):929–34.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Marchfelder A. Particular focus CRISPR-Cas. RNA Biol. 2013;10(5):655–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR supplies acquired resistance in opposition to viruses in prokaryotes. Science. 2007;315(5819):1709–12.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 12.

    Manghwar H, Lindsey Ok, Zhang X, Jin S. CRISPR/Cas system: latest advances and future prospects for genome modifying. Developments Plant Sci. 2019;24(12):1102–25.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 13.

    Wang Y, Li S, Liu L, Feng L. Photothermal-responsive conjugated polymer nanoparticles for fast and efficient killing of micro organism. ACS Appl Bio Mater. 2018;1(1):27–32.

    CAS 

    Google Scholar
     

  • 14.

    De Jong WH, Borm PJ. Drug supply and nanoparticles:functions and hazards. Int J Nanomedicine. 2008;3(2):133–49.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Chen Z, Yuan H, Liang H. Synthesis of multifunctional cationic poly(p-phenylenevinylene) for selectively killing micro organism and lysosome-specific imaging. ACS Appl Mater Interfaces. 2017;9(11):9260–4.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 16.

    Li Y, Li S, Wang J, Liu G. CRISPR/Cas programs in the direction of next-generation biosensing. Developments Biotechnol. 2019;37(7):730–43.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Pickar-Oliver A, Gersbach CA. The subsequent technology of CRISPR-Cas applied sciences and functions. Nat Rev Mol Cell Biol. 2019;20(8):490–507.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 18.

    Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel technique to fight antibiotic resistance: a sight into the mixture of CRISPR/Cas9 and nanoparticles. Pharmaceutics. 2021;13(3):352.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 19.

    Ishino Y, Shinagawa H, Makino Ok, Amemura M, Nakata A. Nucleotide sequence of the iap gene, chargeable for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 20.

    Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes which can be related to DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 21.

    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered usually interspaced brief palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Studying). 2005;151(Pt 8):2551–61.

    CAS 

    Google Scholar
     

  • 22.

    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system supplies immunity in Escherichia coli. Nucleic Acids Res. 2011;39(21):9275–82.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 23.

    Jinek M, Chylinski Ok, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 24.

    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided modifying of bacterial genomes utilizing CRISPR-Cas programs. Nat Biotechnol. 2013;31(3):233–9.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 25.

    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An up to date evolutionary classification of CRISPR-Cas programs. Nat Rev Microbiol. 2015;13(11):722–36.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 26.

    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas programs: a burst of sophistication 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 27.

    Makarova KS, Wolf YI, Koonin EV. Classification and nomenclature of CRISPR-Cas programs: the place from right here? Crispr J. 2018;1(5):325–36.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Almendros C, Nobrega FL, McKenzie RE, Brouns SJJ. Cas4-Cas1 fusions drive environment friendly PAM choice and management CRISPR adaptation. Nucleic Acids Res. 2019;47(10):5223–30.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 29.

    Newire E, Aydin A, Juma S, Enne VI, Roberts AP. Identification of a sort IV-A CRISPR-Cas system situated solely on IncHI1B/IncFIB plasmids in Enterobacteriaceae. Entrance Microbiol. 2020;11:1937.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJ. CRISPR-Cas: adapting to alter. Science. 2017;356(6333):eaal5056.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Amitai G, Sorek R. CRISPR-Cas adaptation: insights into the mechanism of motion. Nat Rev Microbiol. 2016;14(2):67–76.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 33.

    Globyte V, Lee SH, Bae T, Kim JS, Joo C. CRISPR/Cas9 searches for a protospacer adjoining motif by lateral diffusion. Embo J. 2019;38(4):e99466.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Strich JR, Chertow DS. CRISPR-Cas biology and its utility to infectious ailments. J Clin Microbiol. 2019;57(4):e01307-18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: back and forth. Cell. 2018;172(6):1239–59.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 36.

    Barrangou R. CRISPR-Cas programs and RNA-guided interference. Wiley Interdiscip Rev RNA. 2013;4(3):267–78.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 37.

    Chylinski Ok, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of sort II CRISPR-Cas programs. Nucleic Acids Res. 2014;42(10):6091–105.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 38.

    van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic foundation of CRISPR-Cas programs. Nat Rev Microbiol. 2014;12(7):479–92.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Bland C, Ramsey TL, Sabree F, Lowe M, Brown Ok, Kyrpides NC, et al. CRISPR recognition instrument (CRT): a instrument for computerized detection of clustered usually interspaced palindromic repeats. BMC Bioinform. 2007;8:209.


    Google Scholar
     

  • 40.

    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an replace of CRISRFinder, features a transportable model, enhanced efficiency and integrates seek for Cas proteins. Nucleic Acids Res. 2018;46(W1):W246–51.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 41.

    Edgar RC. PILER-CR: quick and correct identification of CRISPR repeats. BMC Bioinform. 2007;8:18.


    Google Scholar
     

  • 42.

    Biswas A, Staals RH, Morales SE, Fineran PC, Brown CM. CRISPRDetect: a versatile algorithm to outline CRISPR arrays. BMC Genomics. 2016;17:356.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Mitrofanov A, Alkhnbashi OS, Shmakov SA, Makarova KS, Koonin EV, Backofen R. CRISPRidentify: identification of CRISPR arrays utilizing machine studying strategy. Nucleic Acids Res. 2021;49(4):e20.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 44.

    Moller AG, Liang C. MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes. PeerJ. 2017;5:e3788.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Skennerton CT, Imelfort M, Tyson GW. Crass: identification and reconstruction of CRISPR from unassembled metagenomic information. Nucleic Acids Res. 2013;41(10):e105.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 46.

    T. SC. MinCED: Mining CRISPRs in environmental datasets.2016. https://github.com/ctSkennerton/minced/tree/grasp. Accessed 16 Sep 2020.

  • 47.

    Rho M, Wu YW, Tang H, Doak TG, Ye Y. Numerous CRISPRs evolving in human microbiomes. PLoS Genet. 2012;8(6):e1002441.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 48.

    Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ. CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas Loci. Crispr J. 2020;3(6):462–9.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 49.

    Alkhnbashi OS, Shah SA, Garrett RA, Saunders SJ, Costa F, Backofen R. Characterizing chief sequences of CRISPR loci. Bioinformatics. 2016;32(17):i576–85.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 50.

    Biswas A, Fineran PC, Brown CM. Correct computational prediction of the transcribed strand of CRISPR non-coding RNAs. Bioinformatics. 2014;30(13):1805–13.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 51.

    Solar J, Liu H, Liu J, Cheng S, Peng Y, Zhang Q, et al. CRISPR-Native: a neighborhood single-guide RNA (sgRNA) design instrument for non-reference plant genomes. Bioinformatics. 2019;35(14):2501–3.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 52.

    Perez AR, Pritykin Y, Vidigal JA, Chhangawala S, Zamparo L, Leslie CS, et al. GuideScan software program for improved single and paired CRISPR information RNA design. Nat Biotechnol. 2017;35(4):347–9.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 53.

    Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME, et al. Optimized libraries for CRISPR-Cas9 genetic screens with a number of modalities. Nat Commun. 2018;9(1):5416.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 54.

    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximise exercise and decrease off-target results of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184–91.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 55.

    Störtz F, Minary P. crisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Res. 2021;49(D1):D855–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Cui Y, Liao X, Peng S, Tang T, Huang C, Yang C. OffScan: a common and quick CRISPR off-target websites detection instrument. BMC Genomics. 2020;21(Suppl 1):872.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 57.

    Greene AC. CRISPR-based antibacterials: reworking bacterial protection into offense. Developments Biotechnol. 2018;36(2):127–30.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 58.

    Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, et al. Cytotoxic chromosomal concentrating on by CRISPR/Cas programs can reshape bacterial genomes and expel or transform pathogenicity islands. PLoS Genet. 2013;9(4):e1003454.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 59.

    Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials utilizing effectively delivered RNA-guided nucleases. Nat Biotechnol. 2014;32(11):1141–5.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 60.

    Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to supply sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–50.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 61.

    Gholizadeh P, Köse Ş, Dao S, Ganbarov Ok, Tanomand A, Dal T, et al. How CRISPR-Cas system might be used to fight antimicrobial resistance. Infect Drug Resist. 2020;13:1111–21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. CRISPR interference can stop pure transformation and virulence acquisition throughout in vivo bacterial an infection. Cell Host Microbe. 2012;12(2):177–86.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 63.

    Gomaa AA, Klumpe HE, Luo ML, Selle Ok, Barrangou R, Beisel CL. Programmable elimination of bacterial strains by use of genome-targeting CRISPR-Cas programs. mBio. 2014;5(1):e00928-13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Park JY, Moon BY, Park JW, Thornton JA, Park YH, Search engine optimization KS. Genetic engineering of a temperate phage-based supply system for CRISPR/Cas9 antimicrobials in opposition to Staphylococcus aureus. Sci Rep. 2017;7:44929.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 65.

    Kiga Ok, Tan XE, Ibarra-Chávez R, Watanabe S, Aiba Y, Sato’o Y, et al. Improvement of CRISPR-Cas13a-based antimicrobials able to sequence-specific killing of goal micro organism. Nat Commun. 2020;11(1):2934.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 66.

    Selle Ok, Fletcher JR, Tuson H, Schmitt DS, McMillan L, Vridhambal GS, et al. In vivo concentrating on of clostridioides difficile utilizing phage-delivered CRISPR-Cas3 antimicrobials. mBio. 2020;11(2):e00019-20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Kang YK, Kwon Ok, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral genome modifying based mostly on a polymer-derivatized CRISPR nanocomplex for concentrating on bacterial pathogens and antibiotic resistance. Bioconjug Chem. 2017;28(4):957–67.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 68.

    Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant micro organism. Proc Natl Acad Sci U S A. 2015;112(23):7267–72.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 69.

    Kim JS, Cho DH, Park M, Chung WJ, Shin D, Ko KS, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016;26(2):394–401.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 70.

    Tagliaferri TL, Guimarães NR, Pereira MPM, Vilela LFF, Horz HP, Dos Santos SG, et al. Exploring the potential of CRISPR-Cas9 beneath difficult situations: going through high-copy plasmids and counteracting beta-lactam resistance in medical strains of enterobacteriaceae. Entrance Microbiol. 2020;11:578.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Liu H, Li H, Liang Y, Du X, Yang C, Yang L, et al. Phage-delivered sensitisation with subsequent antibiotic therapy reveals sustained impact in opposition to antimicrobial resistant micro organism. Theranostics. 2020;10(14):6310–21.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 72.

    Hao M, He Y, Zhang H, Liao XP, Liu YH, Solar J, et al. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant Enterobacteriaceae. Antimicrob Brokers Chemother. 2020;64(9):e00843-20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Wang P, He D, Li B, Guo Y, Wang W, Luo X, et al. Eliminating mcr-1-harbouring plasmids in medical isolates utilizing the CRISPR/Cas9 system. J Antimicrob Chemother. 2019;74(9):2559–65.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 74.

    Lauritsen I, Porse A, Sommer MOA, Nørholm MHH. A flexible one-step CRISPR-Cas9 based mostly strategy to plasmid-curing. Microb Cell Truth. 2017;16(1):135.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Rodrigues M, McBride SW, Hullahalli Ok, Palmer KL, Duerkop BA. Conjugative supply of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob Brokers Chemother. 2019;63(11):e01454-19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Wanner S, Schade J, Keinhörster D, Weller N, George SE, Kull L, et al. Wall teichoic acids mediate elevated virulence in Staphylococcus aureus. Nat Microbiol. 2017;2:16257.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 77.

    Wu X, Zha J, Koffas MAG, Dordick JS. Decreasing Staphylococcus aureus resistance to lysostaphin utilizing CRISPR-dCas9. Biotechnol Bioeng. 2019;116(12):3149–59.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 78.

    Wu ZY, Huang YT, Chao WC, Ho SP, Cheng JF, Liu PY. Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome modifying. J Adv Res. 2019;18:61–9.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 79.

    Solar Q, Wang Y, Dong N, Shen L, Zhou H, Hu Y, et al. Software of CRISPR/Cas9-based genome modifying in learning the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrob Brokers Chemother. 2019;63(7):e00113-19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular organic research. Lancet Infect Dis. 2016;16(2):161–8.

    PubMed 

    Google Scholar
     

  • 81.

    Dong H, Xiang H, Mu D, Wang D, Wang T. Exploiting a conjugative CRISPR/Cas9 system to eradicate plasmid harbouring the mcr-1 gene from Escherichia coli. Int J Antimicrob Brokers. 2019;53(1):1–8.

    PubMed 
    CAS 

    Google Scholar
     

  • 82.

    Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system. Infect Drug Resist. 2020;13:1171–8.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 83.

    Qiu H, Gong J, Butaye P, Lu G, Huang Ok, Zhu G, et al. CRISPR/Cas9/sgRNA-mediated focused gene modification confirms the cause-effect relationship between gyrA mutation and quinolone resistance in Escherichia coli. FEMS Microbiol Lett. 2018;365(13):3.


    Google Scholar
     

  • 84.

    Worth VJ, Huo W, Sharifi A, Palmer KL. CRISPR-Cas and restriction-modification act additively in opposition to conjugative antibiotic resistance plasmid switch in Enterococcus faecalis. mSphere. 2016;1(3):e00064-16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Kiga Ok, Tan XE, Ibarra-Chavez R, Watanabe S, Aiba Y, Sato’o Y, et al. Improvement of CRISPR-Cas13a-based antimicrobials able to sequence-specific killing of goal micro organism. Nat Commun. 2020;11(1):2934.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 86.

    Le S, He X, Tan Y, Huang G, Zhang L, Lux R, et al. Mapping the tail fiber because the receptor binding protein chargeable for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS ONE. 2013;8(7):e68562.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 87.

    Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U. Extending the host vary of bacteriophage particles for DNA transduction. Mol Cell. 2017;66(5):721-8.e3.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 88.

    Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, et al. CRISPR/Cas9-based genome modifying for illness modeling and remedy: challenges and alternatives for nonviral supply. Chem Rev. 2017;117(15):9874–906.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 89.

    Angélica D, Luis DV, Noel R, María C, George C, Ramaz Ok, et al. Antimicrobial exercise of poly(ester urea) electrospun fibers loaded with bacteriophages. Fibers. 2018;6(2):33.


    Google Scholar
     

  • 90.

    Mohtaram NK, Ko J, Carlson M, Jun MB, Willerth SM, editors. Nanofabrication of electrospun fibers for managed launch of retinoic acid. In: Proceedings of the eighth worldwide convention on micromanufacturing; 2013.

  • 91.

    Chadha P, Katare OP, Chhibber S. Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns. 2017;43(7):1532–43.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Colom J, Cano-Sarabia M, Otero J, Cortés P, Maspoch D, Llagostera M. Liposome-Encapsulated bacteriophages for enhanced oral phage remedy in opposition to Salmonella spp. Appl Environ Microbiol. 2015;81(14):4841–9.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 93.

    Singla S, Harjai Ok, Katare OP, Chhibber S. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS ONE. 2016;11(4):e0153777.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Abdelsattar AS, Abdelrahman F, Dawoud A, Connerton IF, El-Shibiny A. Encapsulation of E. coli phage ZCEC5 in chitosan-alginate beads as a supply system in phage remedy. AMB Categorical. 2019;9(1):87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Cobb LH, Park J, Swanson EA, Beard MC, McCabe EM, Rourke AS, et al. CRISPR-Cas9 modified bacteriophage for therapy of Staphylococcus aureus induced osteomyelitis and gentle tissue an infection. PLoS ONE. 2019;14(11):e0220421.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 96.

    Esteban PP, Jenkins AT, Arnot TC. Elucidation of the mechanisms of motion of Bacteriophage Ok/nano-emulsion formulations in opposition to S. aureus through measurement of particle dimension and zeta potential. Colloids Surf B Biointerfaces. 2016;139:87–94.

    PubMed 
    CAS 

    Google Scholar
     

  • 97.

    Knudsen KB, Northeved H, Kumar PE, Permin A, Gjetting T, Andresen TL, et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 2015;11(2):467–77.

    PubMed 
    CAS 

    Google Scholar
     

  • 98.

    Chang HI, Yeh MK. Scientific improvement of liposome-based medication: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60.

    PubMed 
    CAS 

    Google Scholar
     

  • 99.

    Yin H, Kauffman KJ, Anderson DG. Supply applied sciences for genome modifying. Nat Rev Drug Discov. 2017;16(6):387–99.

    PubMed 
    CAS 

    Google Scholar
     

  • 100.

    Zhang P, Draz MS. Practical nanomaterial for theranostic medication. Curr Prime Med Chem. 2019;19(27):2447–8.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 101.

    Shen H, Huang X, Min J, Le S, Wang Q, Wang X, et al. Nanoparticle supply programs for DNA/RNA and their Potential functions in nanomedicine. Curr Prime Med Chem. 2019;19(27):2507–23.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 102.

    Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, et al. Nanoparticle-mediated systemic supply of siRNA for therapy of cancers and viral infections. Theranostics. 2014;4(9):872–92.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 103.

    Riley MK, Vermerris W. Current advances in nanomaterials for gene delivery-a evaluate. Nanomaterials. 2017;7(5):94.


    Google Scholar
     

  • 104.

    Sahu R, Verma R, Dixit S, Igietseme JU, Black CM, Duncan S, et al. Way forward for human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as secure vaccine supply autos. Skilled Rev Vaccines. 2018;17(3):217–27.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 105.

    Shi Y, Huang G. Current developments of biodegradable and biocompatible supplies based mostly micro/nanoparticles for delivering macromolecular therapeutics. Crit Rev Ther Drug Provider Syst. 2009;26(1):29–84.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Tao Y, Yi Ok, Hu H, Shao D, Li M. Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome modifying. J Mater Chem B. 2021;9(1):94–100.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 107.

    Suzuki Y, Onuma H, Sato R, Sato Y, Hashiba A, Maeki M, et al. Lipid nanoparticles loaded with ribonucleoprotein-oligonucleotide complexes synthesized utilizing a microfluidic machine exhibit strong genome modifying and hepatitis B virus inhibition. J Management Launch. 2021;330:61–71.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 108.

    Monk IR, Shah IM, Xu M, Tan MW, Foster TJ. Remodeling the untransformable: utility of direct transformation to govern genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio. 2012;3(2):e00277-11.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 109.

    Ram G, Ross HF, Novick RP, Rodriguez-Pagan I, Jiang D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial brokers that treatment infections in mice. Nat Biotechnol. 2018;36(10):971–6.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 110.

    Hamilton TA, Pellegrino GM, Therrien JA, Ham DT, Bartlett PC, Karas BJ, et al. Environment friendly inter-species conjugative switch of a CRISPR nuclease for focused bacterial killing. Nat Commun. 2019;10(1):4544.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sørensen SJ, et al. Broad host vary plasmids can invade an unexpectedly numerous fraction of a soil bacterial group. ISME J. 2015;9(4):934–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Kozlowicz BK, Dworkin M, Dunny GM. Pheromone-inducible conjugation in Enterococcus faecalis: a mannequin for the evolution of organic complexity? Int J Med Microbiol. 2006;296(2–3):141–7.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 113.

    Hirt H, Greenwood-Quaintance KE, Karau MJ, Until LM, Kashyap PC, Patel R, et al. Enterococcus faecalis intercourse pheromone cCF10 enhances conjugative plasmid switch in vivo. mBio. 2018;9(1):e0003718.


    Google Scholar
     

  • 114.

    Reuter A, Hilpert C, Dedieu-Berne A, Lematre S, Gueguen E, Launay G, et al. Focused-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas programs obtain strain-specific antibacterial exercise. Nucleic Acids Res. 2021;49(6):3584–98.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 115.

    Miller JB, Zhang S, Kos P, Xiong H, Zhou Ok, Perelman SS, et al. Non-viral CRISPR/Cas gene modifying in vitro and in vivo enabled by artificial nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl. 2017;56(4):1059–63.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 116.

    Gholizadeh P, Aghazadeh M, Asgharzadeh M, Kafil HS. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. Eur J Clin Microbiol Infect Dis. 2017;36(11):2043–51.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 117.

    Palmer KL, Gilmore MS. Multidrug-resistant enterococci lack CRISPR-cas. mBio. 2010;1(4):e00227-10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Pourcel C, Salvignol G, Vergnaud G. CRISPR parts in Yersinia pestis purchase new repeats by preferential uptake of bacteriophage DNA, and supply extra instruments for evolutionary research. Microbiology. 2005;151(Pt 3):653–63.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 119.

    Garneau JE, Dupuis M, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 120.

    Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene switch in staphylococci by concentrating on DNA. Science. 2008;322(5909):1843–5.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 121.

    Guo X, Wang Y, Duan G, Xue Z, Wang L, Wang P, et al. Detection and evaluation of CRISPRs of Shigella. Curr Microbiol. 2015;70(1):85–90.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 122.

    Toro M, Cao G, Ju W, Allard M, Barrangou R, Zhao S, et al. Affiliation of clustered usually interspaced brief palindromic repeat (CRISPR) parts with particular serotypes and virulence potential of shiga toxin-producing Escherichia coli. Appl Environ Microbiol. 2014;80(4):1411–20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    García-Gutiérrez E, Almendros C, Mojica FJ, Guzmán NM, García-Martínez J. CRISPR content material correlates with the pathogenic potential of Escherichia coli. PLoS ONE. 2015;10(7):e0131935.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Hong L, Zhang B, Duan G, Liang W, Wang Y, Chen S, et al. Position of CRISPR/Cas programs in drugresistance and virulence and the impact of IS600 on the expression of cse2 in Shigella. Wei Sheng Wu Xue Bao. 2016;56(12):1912–23.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 125.

    Lengthy J, Xu Y, Ou L, Yang H, Xi Y, Chen S, et al. Polymorphism of Sort I-F CRISPR/Cas system in Escherichia coli of phylogenetic group B2 and its utility in genotyping. Infect Genet Evol. 2019;74:103916.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 126.

    Solar H, Li Y, Shi X, Lin Y, Qiu Y, Zhang J, et al. Affiliation of CRISPR/Cas evolution with Vibrio parahaemolyticus virulence components and genotypes. Foodborne Pathog Dis. 2015;12(1):68–73.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Li L, Wong HC, Nong W, Cheung MK, Regulation PT, Kam KM, et al. Comparative genomic evaluation of medical and environmental strains supplies perception into the pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics. 2014;15(1):1135.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Yu LH, Teh CSJ, Yap KP, Ung EH, Thong KL. Comparative genomic supplies perception into the virulence and genetic variety of Vibrio parahaemolyticus related to shrimp acute hepatopancreatic necrosis illness. Infect Genet Evol. 2020;83:104347.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 129.

    Zheng Z, Zhang Y, Liu Z, Dong Z, Xie C, Bravo A, et al. The CRISPR-Cas programs had been selectively inactivated throughout evolution of Bacillus cereus group for adaptation to numerous environments. ISME J. 2020;14(6):1479–93.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Leungtongkam U, Thummeepak R, Kitti T, Tasanapak Ok, Wongwigkarn J, Types KM, et al. Genomic evaluation reveals excessive virulence and antibiotic resistance amongst phage prone Acinetobacter baumannii. Sci Rep. 2020;10(1):16154.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 131.

    Solbiati J, Duran-Pinedo A, Godoy Rocha F, Gibson FC third, Frias-Lopez J. Virulence of the pathogen Porphyromonas gingivalis is managed by the CRISPR-Cas protein Cas3. mSystems. 2020;5(5):e00852-20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Li R, Fang L, Tan S, Yu M, Li X, He S, et al. Sort I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity. Cell Res. 2016;26(12):1273–87.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 133.

    Cui L, Wang X, Huang D, Zhao Y, Feng J, Lu Q, et al. CRISPR-cas3 of salmonella upregulates bacterial biofilm formation and virulence to host cells by concentrating on quorum-sensing programs. Pathogens. 2020;9(1):53.

    CAS 

    Google Scholar
     

  • 134.

    Sampson TR, Weiss DS. CRISPR-Cas programs: new gamers in gene regulation and bacterial physiology. Entrance Cell Infect Microbiol. 2014;4:37.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knegt G, Hamersma M, et al. A novel hyperlink between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis. 2013;32(2):207–26.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 136.

    Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G, Dai M, et al. The involvement of the Cas9 gene in virulence of Campylobacter jejuni. Entrance Cell Infect Microbiol. 2018;8:285.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Sashital DG. Pathogen detection within the CRISPR-Cas period. Genome Med. 2018;10(1):32.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Zhao X, Zhang W, Qiu X, Mei Q, Luo Y, Fu W. Speedy and delicate exosome detection with CRISPR/Cas12a. Anal Bioanal Chem. 2020;412(3):601–9.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 139.

    Jiao J, Kong Ok, Han J, Music S, Bai T, Music C, et al. Subject detection of a number of RNA viruses/viroids in apple utilizing a CRISPR/Cas12a-based visible assay. Plant Biotechnol J. 2021;19(2):394–405.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 140.

    Pattarawarapan M, Nangola S, Cressey TR, Tayapiwatana C. Improvement of a one-step immunochromatographic strip take a look at for the fast detection of nevirapine (NVP), a generally used antiretroviral drug for the therapy of HIV/AIDS. Talanta. 2007;71(1):462–70.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 141.

    Ma L, Peng L, Yin L, Liu G, Man S. CRISPR-Cas12a-powered dual-mode biosensor for ultrasensitive and cross-validating detection of pathogenic micro organism. ACS Sens. 2021;6(8):2920–7.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 142.

    Spoelstra WK, Jacques JM, Gonzalez-Linares R, Nobrega FL, Haagsma AC, Dogterom M, et al. CRISPR-based DNA and RNA detection with liquid-liquid part separation. Biophys J. 2021;120(7):1198–209.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 143.

    Ding X, Yin Ok, Li Z, Lalla RV, Ballesteros E, Sfeir MM, et al. Ultrasensitive and visible detection of SARS-CoV-2 utilizing all-in-one twin CRISPR-Cas12a assay. Nat Commun. 2020;11(1):4711.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 144.

    Yuan C, Tian T, Solar J, Hu M, Wang X, Xiong E, et al. Common and naked-eye gene detection platform based mostly on the clustered usually interspaced brief palindromic Repeats/Cas12a/13a system. Anal Chem. 2020;92(5):4029–37.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 145.

    Bikkarolla SK, Nordberg V, Rajer F, Müller V, Kabir MH, Kk S, et al. Optical DNA mapping mixed with Cas9-targeted resistance gene identification for fast monitoring of resistance plasmids in a neonatal intensive care unit outbreak. mBio. 2019;10(4):e00347-19.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 146.

    Nalefski EA, Patel N, Leung PJY, Islam Z, Kooistra RM, Parikh I, et al. Kinetic evaluation of Cas12a and Cas13a RNA-Guided nucleases for improvement of improved CRISPR-Based mostly diagnostics. iScience. 2021;24(9):102996.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 147.

    Quan J, Langelier C, Kuchta A, Batson J, Teyssier N, Lyden A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019;47(14):e83.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 148.

    Sander JD, Joung JK. CRISPR-Cas programs for modifying, regulating and concentrating on genomes. Nat Biotechnol. 2014;32(4):347–55.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 149.

    Nilsson AN, Emilsson G, Nyberg LK, Noble C, Stadler LS, Fritzsche J, et al. Aggressive binding-based optical DNA mapping for quick identification of micro organism–multi-ligand switch matrix idea and experimental functions on Escherichia coli. Nucleic Acids Res. 2014;42(15):e118.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    Nyberg LK, Persson F, Berg J, Bergström J, Fransson E, Olsson L, et al. A single-step aggressive binding assay for mapping of single DNA molecules. Biochem Biophys Res Commun. 2012;417(1):404–8.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 151.

    Müller V, Rajer F, Frykholm Ok, Nyberg LK, Quaderi S, Fritzsche J, et al. Direct identification of antibiotic resistance genes on single plasmid molecules utilizing CRISPR/Cas9 together with optical DNA mapping. Sci Rep. 2016;6:37938.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 152.

    Abid HZ, Younger E, McCaffrey J, Raseley Ok, Varapula D, Wang HY, et al. Personalized optical mapping by CRISPR-Cas9 mediated DNA labeling with a number of sgRNAs. Nucleic Acids Res. 2021;49(2):e8.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 153.

    Huang M, Zhou X, Wang H, Xing D. Clustered usually interspaced brief palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem. 2018;90(3):2193–200.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 154.

    Solar X, Wang Y, Zhang L, Liu S, Zhang M, Wang J, et al. CRISPR-Cas9 triggered two-step isothermal amplification technique for E. coli O157:H7 detection based mostly on a metal-organic framework platform. Anal Chem. 2020;92(4):3032–41.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 155.

    Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a goal binding unleashes indiscriminate single-stranded DNase exercise. Science. 2018;360(6387):436–9.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 156.

    Ai JW, Zhou X, Xu T, Yang M, Chen Y, He GQ, et al. CRISPR-based fast and ultra-sensitive diagnostic take a look at for Mycobacterium tuberculosis. Emerg Microbes Infect. 2019;8(1):1361–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 157.

    Xiao G, Zhang S, Liang Z, Li G, Fang M, Liu Y, et al. Identification of Mycobacterium abscessus species and subspecies utilizing the Cas12a/sgRNA-based nucleic acid detection platform. Eur J Clin Microbiol Infect Dis. 2020;39(3):551–8.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 158.

    Lyu C, Shi H, Cui Y, Li M, Yan Z, Yan L, et al. CRISPR-based biosensing is potential for fast and delicate analysis of pediatric tuberculosis. Int J Infect Dis. 2020;101:183–7.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 159.

    Bonini A, Poma N, Vivaldi F, Biagini D, Bottai D, Tavanti A, et al. A label-free impedance biosensing assay based mostly on CRISPR/Cas12a collateral exercise for bacterial DNA detection. J Pharm Biomed Anal. 2021;204:114268.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 160.

    Curti LA, Pereyra-Bonnet F, Repizo GD, Fay JV, Salvatierra Ok, Blariza MJ, et al. CRISPR-based platform for carbapenemases and rising viruses detection utilizing Cas12a (Cpf1) effector nuclease. Emerg Microbes Infect. 2020;9(1):1140–8.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 161.

    Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362(6416):839–42.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 162.

    Music F, Wei Y, Wang P, Ge X, Li C, Wang A, et al. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based common bacterial diagnostic platform. Biosens Bioelectron. 2021;185:113262.

    PubMed 
    CAS 

    Google Scholar
     

  • 163.

    Ge X, Meng T, Tan X, Wei Y, Tao Z, Yang Z, et al. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosens Bioelectron. 2021;189:113350.

    PubMed 
    CAS 

    Google Scholar
     

  • 164.

    Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 165.

    Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 166.

    Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Subject-deployable viral diagnostics utilizing CRISPR-Cas13. Science. 2018;360(6387):444–8.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 167.

    Shen J, Zhou X, Shan Y, Yue H, Huang R, Hu J, et al. Delicate detection of a bacterial pathogen utilizing allosteric probe-initiated catalysis and CRISPR-Cas13a amplification response. Nat Commun. 2020;11(1):267.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 168.

    Flashner Y, Fisher M, Tidhar A, Mechaly A, Gur D, Halperin G, et al. The seek for early markers of plague: proof for accumulation of soluble Yersinia pestis LcrV in bubonic and pneumonic mouse fashions of illness. FEMS Immunol Med Microbiol. 2010;59(2):197–206.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 169.

    Schultzhaus Z, Wang Z, Stenger D. Systematic evaluation, identification, and use of CRISPR/Cas13a-associated crRNAs for delicate and particular detection of the lcrV gene of Yersinia pestis. Diagn Microbiol Infect Dis. 2021;99(3):115275.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 170.

    Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug supply and sensor functions. Int J Nanomedicine. 2017;12:5421–31.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 171.

    Boken J, Soni SK, Kumar D. Microfluidic synthesis of nanoparticles and their biosensing functions. Crit Rev Anal Chem. 2016;46(6):538–61.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 172.

    Draz MS, Shafiee H. Functions of gold nanoparticles in virus detection. Theranostics. 2018;8(7):1985.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 173.

    Draz MS, Tang YW, Zhang P. Bio-nanoparticles: nanoscale probes for nanoscale pathogens. twenty first Century nanoscience–a handbook. CRC Press; 2020. p. 20-1–20-23.

  • 174.

    Lengthy L, Liu J, Lu Ok, Zhang T, Xie Y, Ji Y, et al. Extremely delicate and strong peroxidase-like exercise of Au-Pt core/shell nanorod-antigen conjugates for measles virus analysis. J Nanobiotechnology. 2018;16(1):46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 175.

    Chou TC, Hsu W, Wang CH, Chen YJ, Fang JM. Speedy and particular influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. J Nanobiotechnology. 2011;9:52.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 176.

    Ganganboina AB, Chowdhury AD, Khoris IM, Doong RA, Li TC, Hara T, et al. Hole magnetic-fluorescent nanoparticles for dual-modality virus detection. Biosens Bioelectron. 2020;170:112680.

    PubMed 
    CAS 

    Google Scholar
     

  • 177.

    Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug supply and imaging: a promising avenue for most cancers remedy and analysis utilizing focused useful nanoparticles. Int J Most cancers. 2007;120(12):2527–37.

    PubMed 
    CAS 

    Google Scholar
     

  • 178.

    Jin KT, Yao JY, Ying XJ, Lin Y, Chen YF. Nanomedicine and Early Most cancers Analysis: Molecular Imaging utilizing Fluorescence Nanoparticles. Curr Prime Med Chem. 2020;20(30):2737–61.

    PubMed 
    CAS 

    Google Scholar
     

  • 179.

    Gu H, Xu Ok, Xu C, Xu B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun. 2006;9:941–9.


    Google Scholar
     

  • 180.

    Cheng Y, Liu Y, Huang J, Li Ok, Zhang W, Xian Y, et al. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for fast detection of Escherichia coli. Talanta. 2009;77(4):1332–6.

    PubMed 
    CAS 

    Google Scholar
     

  • 181.

    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based mostly on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–81.

    PubMed 
    CAS 

    Google Scholar
     

  • 182.

    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based technique for rationally assembling nanoparticles into macroscopic supplies. Nature. 1996;382(6592):607–9.

    PubMed 
    CAS 

    Google Scholar
     

  • 183.

    Hu M, Yuan C, Tian T, Wang X, Solar J, Xiong E, et al. Single-step, salt-aging-free, and thiol-free freezing development of aunp-based bioprobes for advancing CRISPR-based diagnostics. J Am Chem Soc. 2020;142(16):7506–13.

    PubMed 
    CAS 

    Google Scholar
     

  • 184.

    Kim H, Lee S, Search engine optimization HW, Kang B, Kang T. Clustered usually interspaced brief palindromic repeats-mediated surface-enhanced raman scattering assay for multidrug-resistant micro organism. ACS Nano. 2020;14(12):17241–53.

    CAS 

    Google Scholar
     

  • 185.

    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, et al. Current and way forward for surface-enhanced raman scattering. ACS Nano. 2020;14(1):28–117.

    PubMed 
    CAS 

    Google Scholar
     

  • 186.

    Wang C, Meloni MM, Wu X, Zhuo M, He T, Wang J, et al. Magnetic plasmonic particles for SERS-based micro organism sensing: a evaluate. AIP Adv. 2019;9(1):010701.


    Google Scholar
     

  • 187.

    Moraes Silva S, Tavallaie R, Sandiford L, Tilley RD, Gooding JJ. Gold coated magnetic nanoparticles: from preparation to floor modification for analytical and biomedical functions. Chem Commun. 2016;52(48):7528–40.

    CAS 

    Google Scholar
     

  • 188.

    Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and extremely particular lateral move assays for point-of-care analysis. ACS Nano. 2021;15(3):3593–611.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 189.

    Goudarzi S, Ahmadi A, Farhadi M, Kamrava SK, Saghafi S, Omidfar Ok. Improvement of a brand new immunochromatographic assay utilizing gold nanoparticles for screening of IgA deficiency. Iran J Allergy Bronchial asthma Immunol. 2015;14(1):105–12.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 190.

    Mukama O, Wu J, Li Z, Liang Q, Yi Z, Lu X, et al. An ultrasensitive and particular point-of-care CRISPR/Cas12 based mostly lateral move biosensor for the fast detection of nucleic acids. Biosens Bioelectron. 2020;159:112143.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 191.

    Qiu E, Jin S, Xiao Z, Chen Q, Wang Q, Liu H, et al. CRISPR-based detection of Helicobacter pylori in stool samples. Helicobacter. 2021;26(4):e12828.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 192.

    You Y, Zhang P, Wu G, Tan Y, Zhao Y, Cao S, et al. Extremely particular and delicate detection of yersinia pestis by transportable Cas12a-UPTLFA platform. Entrance Microbiol. 2021;12:700016.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 193.

    Wang X, Xiong E, Tian T, Cheng M, Lin W, Wang H, et al. Clustered usually interspaced brief palindromic repeats/Cas9-mediated lateral move nucleic acid assay. ACS Nano. 2020;14(2):2497–508.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 194.

    Bogers JFM, Berghuis NF, Busker RW, van Booma A, Paauw A, van Leeuwen HC. Shiny fluorescent nucleic acid detection with CRISPR-Cas12a and poly(thymine) templated copper nanoparticles. Biol Strategies Protoc. 2021;6(1):bpaa020.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 195.

    Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. Encapsulation and supply of therapeutic phages. Appl Environ Microbiol. 2020;87(5):e01979-20.


    Google Scholar
     

  • 196.

    Kim HY, Chang RYK, Morales S, Chan HK. Bacteriophage-delivering hydrogels: present progress in combating antibiotic resistant bacterial an infection. Antibiotics. 2021;10(2):130.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 197.

    Sampson TR, Weiss DS. Cas9-dependent endogenous gene regulation is required for bacterial virulence. Biochem Soc Trans. 2013;41(6):1407–11.

    PubMed 
    CAS 

    Google Scholar
     

  • 198.

    Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, et al. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and cellular genetic parts as main elements of the accent genome. BMC Genomics. 2013;14:47.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 199.

    Sesto N, Touchon M, Andrade JM, Kondo J, Rocha EP, Arraiano CM, et al. A PNPase dependent CRISPR System in Listeria. PLoS Genet. 2014;10(1):e1004065.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 200.

    Gholizadeh P, Aghazadeh M, Ghotaslou R, Ahangarzadeh Rezaee M, Pirzadeh T, Köse Ş, et al. CRISPR-cas system within the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis. Virulence. 2020;11(1):1257–67.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 201.

    Tang B, Gong T, Zhou X, Lu M, Zeng J, Peng X, et al. Deletion of cas3 gene in Streptococcus mutans impacts biofilm formation and will increase fluoride sensitivity. Arch Oral Biol. 2019;99:190–7.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 202.

    Zhang A, Chen J, Gong T, Lu M, Tang B, Zhou X, et al. Deletion of csn2 gene impacts acid tolerance and exopolysaccharide synthesis in Streptococcus mutans. Mol Oral Microbiol. 2020;35(5):211–21.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 203.

    Vasquez-Rifo A, Veksler-Lublinsky I, Cheng Z, Ausubel FM, Ambros V. The Pseudomonas aeruginosa accent genome parts affect virulence in the direction of Caenorhabditis elegans. Genome Biol. 2019;20(1):270.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 204.

    Borges AL, Castro B, Govindarajan S, Solvik T, Escalante V, Bondy-Denomy J. Bacterial alginate regulators and phage homologs repress CRISPR-Cas immunity. Nat Microbiol. 2020;5(5):679–87.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 205.

    Spencer BL, Deng L, Patras KA, Burcham ZM, Sanches GF, Nagao PE, et al. Cas9 contributes to group B streptococcal colonization and illness. Entrance Microbiol. 2019;10:1930.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 206.

    Liao W, Liu Y, Chen C, Li J, Du F, Lengthy D, et al. Distribution of CRISPR-Cas programs in medical carbapenem-resistant klebsiella pneumoniae strains in a chinese language tertiary hospital and its potential relationship with virulence. Microb Drug Resist. 2020;26(6):630–6.

    PubMed 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *