Gentle–matter coupling in large-area van der Waals superlattices
5 mins read

Gentle–matter coupling in large-area van der Waals superlattices


  • 1.

    Imamoto, H., Sato, F., Imanaka, Okay. & Shimura, M. AlGaAs/GaAs superlattice multi-quantum-well laser diode. Superlattices Microstruct. 5, 167–170 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Fox, M. & Ispasoiu, R. in Springer Handbook of Digital and Photonic Supplies (eds Kasap, S. & Capper, P.) 1021–1040 (Springer Worldwide Publishing, 2017).

  • 3.

    Tredicucci, A., et al. Superlattice quantum cascade lasers. In Proc. In-Aircraft Semiconductor Lasers III, Optoelectronics ’99—Built-in Optoelectronic Gadgets, 2329 January 1999, San Jose, CA, USA (Eds Choi, H. Okay. & Zory, P. S.) Vol. 3628 (SPIE, 1999).

  • 4.

    Withers, F. et al. Gentle-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Ploog, Okay. Molecular beam epitaxy of semiconductor interfaces and quantum wells for superior optoelectronic units. Surf. Interface Anal. 12, 279–287 (1988).

    Article 

    Google Scholar
     

  • 6.

    Gil, B. & Aulombard, R.-L. (eds) Semiconductor Heteroepitaxy: Progress Characterization and System Functions. Proc. Worldwide Convention on Semiconductor Heteroepitaxy, Montpellier, France, 4–7 July 1995 (World Scientific, 1996).

  • 7.

    Lin, Z. et al. 2D supplies advances: from massive scale synthesis and managed heterostructures to improved characterization strategies, defects and purposes. 2D Mater. 3, 042001 (2016).

    Article 

    Google Scholar
     

  • 8.

    Zhao, W. et al. Evolution of digital construction in atomically skinny sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional supplies. Chem. Rev. 113, 3766–3798 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Briggs, N. et al. A roadmap for digital grade 2D supplies. 2D Mater. 6, 022001 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Wang, Q. H., Kalantar-Zadeh, Okay., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition steel dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Jariwala, D., Marks, T. J. & Hersam, M. C. Combined-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Masubuchi, S. et al. Autonomous robotic looking and meeting of two-dimensional crystals to construct van der Waals superlattices. Nat. Commun. 9, 1413 (2018).

    Article 

    Google Scholar
     

  • 14.

    Li, P. et al. Infrared hyperbolic metasurface based mostly on nanostructured van der Waals supplies. Science 359, 892–896 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Atwater, H. A. et al. Supplies challenges for the Starshot lightsail. Nat. Mater. 17, 861–867 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Liu, X. et al. Robust gentle–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional supplies. Nat. Commun. 8, 15251–15251 (2017).

    Article 

    Google Scholar
     

  • 18.

    Kang, Okay. et al. Layer-by-layer meeting of two-dimensional supplies into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article 

    Google Scholar
     

  • 19.

    Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Wang, S., Wang, X. & Warner, J. H. All chemical vapor deposition progress of MoS2:h-BN vertical van der Waals heterostructures. ACS Nano 9, 5246–5254 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Solar, Z. et al. Statement of the interlayer exciton gases in WSe2-p:WSe2 heterostructures. ACS Photonics 7, 1622–1627 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Fang, H. et al. Robust interlayer coupling in van der Waals heterostructures constructed from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Xu, W. et al. Controlling photoluminescence enhancement and power switch in WS2:hBN:WS2 vertical stacks by exact interlayer distances. Small 16, 1905985 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Xu, W. et al. Figuring out the optimized interlayer separation distance in vertical stacked 2D WS2:hBN:MoS2 heterostructures for exciton power switch. Small 14, 1703727 (2018).

    Article 

    Google Scholar
     

  • 25.

    Cadiz, F. et al. Excitonic linewidth approaching the homogeneous restrict in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).


    Google Scholar
     

  • 26.

    Wierzbowski, J. et al. Direct exciton emission from atomically skinny transition steel dichalcogenide heterostructures close to the lifetime restrict. Sci. Rep. 7, 12383 (2017).

    Article 

    Google Scholar
     

  • 27.

    Hu, F. et al. Imaging propagative exciton polaritons in atomically skinny WSe2 waveguides. Phys. Rev. B. 100, 121301 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Gywat, O., Burkard, G. & Loss, D. Biexcitons in coupled quantum dots as a supply of entangled photons. Phys. Rev. B. 65, 205329 (2002).

    Article 

    Google Scholar
     

  • 29.

    Chen, J. et al. Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets through plasmonic nonlinear fano resonance. Commun. Phys. 2, 80 (2019).

    Article 

    Google Scholar
     

  • 30.

    Moore, D. et al. Uncovering topographically hidden options in 2D MoSe2 with correlated potential and optical nanoprobes. npj 2D Mater. Appl. 4, 44 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Alvertis, A. M. et al. First ideas modeling of exciton-polaritons in polydiacetylene chains. J. Chem. Phys. 153, 084103 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Chubarov, M. et al. Wafer-scale epitaxial progress of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Xiang, Y. et al. Monolayer MoS2 on sapphire: an azimuthal reflection high-energy electron diffraction perspective. 2D Mater. 8, 025003 (2020).

    Article 

    Google Scholar
     

  • 35.

    Pettersson, L. A. A., Roman, L. S. & Inganäs, O. Modeling photocurrent motion spectra of photovoltaic units based mostly on natural skinny movies. J. Appl. Phys. 86, 487–496 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Burkhard, G. F. & Hoke, E. T. Switch Matrix Optical Modeling (Stanford Univ., 2011).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *