Nanocarriers floor engineered with cell membranes for most cancers focused chemotherapy | Journal of Nanobiotechnology

Nanocarriers floor engineered with cell membranes for most cancers focused chemotherapy | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Jemal A, Bray F, Middle MM, Ferlay J, Ward E, Forman D. World most cancers statistics. CA: Most cancers J Clin. 2011;61:69–90.


    Google Scholar
     

  • 2.

    Chen W, Zheng R, Zeng H, Zhang S, He J. Annual report on standing of most cancers in China, 2011. Chin J Most cancers Res. 2015;27:2.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an rising platform for most cancers remedy. Nat Nanotechnol. 2007;2:751–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and supply methods. Nat Rev Drug Discov. 2014;13:655–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Danhier F, Feron O, Préat V. To use the tumor microenvironment: passive and lively tumor concentrating on of nanocarriers for anti-cancer drug supply. J Contr Rel. 2010;148:135–46.

    CAS 

    Google Scholar
     

  • 6.

    Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov. 2019;18:273–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Zhou M, Huang H, Wang D, Lu H, Chen J, Chai Z, Yao SQ, Hu Y. Gentle-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration. Nano Lett. 2019;19:3671–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Allen TM, Cullis PR. Liposomal drug supply techniques: from idea to scientific functions. Adv Drug Deliv Rev. 2013;65:36–48.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Moradi Kashkooli F, Soltani M, Souri M. Managed anti-cancer drug launch by way of superior nano-drug supply techniques: static and dynamic concentrating on methods. J Contr Rel. 2020;327:316–49.

    CAS 

    Google Scholar
     

  • 10.

    Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming hurdles in nanoparticle scientific translation: the affect of experimental design and floor modification. Int J Mol Sci. 2019;20:6056.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 11.

    Walsh G. Biopharmaceutical benchmarks 2018. Nat Biotechnol. 2018;36:1136–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    DeLoach J, Barton C, Culler Ok. Preparation of resealed provider erythrocytes and in vivo survival in canines. Am J Vet Res. 1981;42:667–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Pang L, Zhang C, Qin J, Han L, Li R, Hong C, He H, Wang J. A novel technique to realize efficient drug supply: exploit cells as provider mixed with nanoparticles. Drug Deliv. 2017;24:83–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Jiang X, Rocker C, Hafner M, Brandholt S, Dorlich RM, Nienhaus GU. Endo-and exocytosis of zwitterionic quantum dot nanoparticles by dwell HeLa cells. ACS Nano. 2010;4:6787–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic supply platform. Proc Nat Acad Sci. 2011;108:10980–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Maeda H. The improved permeability and retention (EPR) impact in tumor vasculature: the important thing position of tumor-selective macromolecular drug concentrating on. Adv Enzyme Regul. 2001;41:189–207.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Sabu C, Rejo C, Kotta S, Pramod Ok. Bioinspired and biomimetic techniques for superior drug and gene supply. J Contr Rel. 2018;287:142–55.

    CAS 

    Google Scholar
     

  • 18.

    Rasheed T, Nabeel F, Raza A, Bilal M, Iqbal H. Biomimetic nanostructures/cues as drug supply techniques: a assessment. Mater Right this moment Chem. 2019;13:147–57.

    CAS 

    Google Scholar
     

  • 19.

    Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene remedy vectors. Mol Ther. 2020;28:709–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY. Breaking down the obstacles to precision most cancers nanomedicine. Developments Biotechnol. 2017;35:159–71.


    Google Scholar
     

  • 21.

    Gao M, Liang C, Tune X, Chen Q, Jin Q, Wang C, Liu Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale synthetic crimson blood cells to alleviate tumor hypoxia and improve most cancers radiotherapy. Adv Mater. 2017;29:1701429.


    Google Scholar
     

  • 22.

    Cao H, Dan Z, He X, Zhang Z, Yu H, Yin Q, Li Y. Liposomes coated with remoted macrophage membrane can goal lung metastasis of breast most cancers. ACS Nano. 2016;10:7738–48.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Orbach A, Zelig O, Yedgar S, Barshtein G. Biophysical and biochemical markers of crimson blood cell fragility. Transf Med Hemother. 2017;44:183–7.


    Google Scholar
     

  • 24.

    Zhu J-Y, Zheng D-W, Zhang M-Ok, Yu W-Y, Qiu W-X, Hu J-J, Feng J, Zhang X-Z. Preferential most cancers cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic most cancers cell membranes. Nano Lett. 2016;16:5895–901.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Tune Q, Wei X, Chen H, Gao X. Nanoparticles coated with neutrophil membranes can successfully deal with most cancers metastasis. ACS Nano. 2017;11:1397–411.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P, Ferri LE. Neutrophils promote liver metastasis by way of Mac-1-mediated interactions with circulating tumor cells. Can Res. 2012;72:3919–27.

    CAS 

    Google Scholar
     

  • 27.

    Parodi A, Quattrocchi N, Van De Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat Nanotechnol. 2013;8:61–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Chugh V, Vijaya Krishna Ok, Pandit A. Cell membrane-coated mimics: a methodological method for fabrication, characterization for therapeutic functions, and challenges for scientific translation. ACS Nano. 2021;15:17080–123.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 29.

    Engelman DM. Membranes are extra mosaic than fluid. Nature. 2005;438:578–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Bucior I, Scheuring S, Engel A, Burger MM. Carbohydrate–carbohydrate interplay gives adhesion drive and specificity for mobile recognition. J Cell Biol. 2004;165:529–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Simons Ok, Vaz WL. Mannequin techniques, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 2004;33:269–95.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Casares D, Escribá PV, Rosselló CA. Membrane lipid composition: impact on membrane and organelle construction, perform and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019;20:2167.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 33.

    Kim J, Koo B-Ok, Knoblich JA. Human organoids: mannequin techniques for human biology and drugs. Nat Rev Mol Cell Biol. 2020;21:571–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Andrews RK, López J, Berndt MC. Molecular mechanisms of platelet adhesion and activation. Int J Biochem Cell Biol. 1997;29:91–105.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Si J, Shao S, Shen Y, Wang Ok. Macrophages as lively nanocarriers for focused early and adjuvant most cancers chemotherapy. Small. 2016;12:5108–19.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Sökeland G, Schumacher U. The useful position of integrins throughout intra-and extravasation throughout the metastatic cascade. Mol Most cancers. 2019;18:1–19.


    Google Scholar
     

  • 37.

    Bose RJ, Paulmurugan R, Moon J, Lee S-H, Park H. Cell membrane-coated nanocarriers: the rising focused supply system for most cancers theranostics. Drug Discov Right this moment. 2018;23:891–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Evangelopoulos M, Parodi A, Martinez JO, Yazdi IK, Cevenini A, van de Ven AL, Quattrocchi N, Boada C, Taghipour N, Corbo C. Cell supply determines the immunological influence of biomimetic nanoparticles. Biomaterials. 2016;82:168–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Kaneti L, Bronshtein T, Malkah Dayan N, Kovregina I, Letko Khait N, Lupu-Haber Y, Fliman M, Schoen BW, Kaneti G, Machluf M. Nanoghosts as a novel pure nonviral gene supply platform safely concentrating on a number of cancers. Nano Lett. 2016;16:1574–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. Therapeutic cell engineering with surface-conjugated artificial nanoparticles. Nat Med. 2010;16:1035–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Van Deun J, Roux Q, Deville S, Van Acker T, Rappu P, Miinalainen I, Heino J, Vanhaecke F, De Geest BG, De Wever O. Feasibility of mechanical extrusion to coat nanoparticles with extracellular vesicle membranes. Cells. 2020;9:1797.

    PubMed Central 

    Google Scholar
     

  • 42.

    Parrow NL, Violet P-C, Tu H, Nichols J, Pittman CA, Fitzhugh C, Fleming RE, Mohandas N, Tisdale JF, Levine M. Measuring deformability and crimson cell heterogeneity in blood by ektacytometry. J Vis Exp JoVE. 2018;2018:56910.


    Google Scholar
     

  • 43.

    Kuo Y-C, Wu H-C, Hoang D, Bentley WE, D’Souza WD, Raghavan SR. Colloidal properties of nanoerythrosomes derived from bovine crimson blood cells. Langmuir. 2016;32:171–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Kim DS, Lee MW, Ko YJ, Jang IK, Jeon S, Na B, Chae JJ, Sung KW, Koo HH, Yoo KH. Impact of ex vivo tradition density on CXCR7 expression in human mesenchymal stem cells. Int J Clin Exp Med. 2016;9:10802–10.

    CAS 

    Google Scholar
     

  • 45.

    Park JS, Suryaprakash S, Lao Y-H, Leong KW. Engineering mesenchymal stem cells for regenerative drugs and drug supply. Strategies. 2015;84:3–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Muzykantov VR, Murciano JC, Taylor RP, Atochina EN, Herraez A. Regulation of the complement-mediated elimination of crimson blood cells modified with biotin and streptavidin. Anal Biochem. 1996;241:109–19.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Wang Y, Zhang Ok, Qin X, Li T, Qiu J, Yin T, Huang J, McGinty S, Pontrelli G, Ren J. Biomimetic nanotherapies: crimson blood cell based mostly core–shell structured nanocomplexes for atherosclerosis administration. Adv Sci. 2019;6:1900172.


    Google Scholar
     

  • 48.

    Hu C-MJ, Fang RH, Wang Ok-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526:118–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, Zhang S, Fang RH, Gao W, Nizet V. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis administration. Proc Natl Acad Sci. 2017;114:11488–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Deng G, Solar Z, Li S, Peng X, Li W, Zhou L, Ma Y, Gong P, Cai L. Cell-membrane immunotherapy based mostly on pure killer cell membrane coated nanoparticles for the efficient inhibition of major and abscopal tumor progress. ACS Nano. 2018;12:12096–108.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    An X, Salomao M, Guo X, Gratzer W, Mohandas N. Tropomyosin modulates erythrocyte membrane stability. Blood. 2007;109:1284–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Chakraborty S, Doktorova M, Molugu TR, Heberle FA, Scott HL, Dzikovski B, Nagao M, Stingaciu L-R, Standaert RF, Barrera FN. How ldl cholesterol stiffens unsaturated lipid membranes. Proc Natl Acad Sci. 2020;117:21896–905.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Natural nanomaterials and their functions within the therapy of oral illnesses. Molecules. 2016;21:207.

    PubMed Central 

    Google Scholar
     

  • 54.

    Anselmo AC, Mitragotri S. A assessment of scientific translation of inorganic nanoparticles. AAPS J. 2015;17:1041–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Ehlerding EB, Chen F, Cai W. Biodegradable and renal clearable inorganic nanoparticles. Adv Sci. 2016;3:1500223.


    Google Scholar
     

  • 56.

    Su S, Kang PM. Systemic assessment of biodegradable nanomaterials in nanomedicine. Nanomaterials. 2020;10:656.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 57.

    Ye H, Wang Ok, Wang M, Liu R, Tune H, Li N, Lu Q, Zhang W, Du Y, Yang W. Bioinspired nanoplatelets for chemo-photothermal remedy of breast most cancers metastasis inhibition. Biomaterials. 2019;206:1–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Xu C, Liu W, Hu Y, Li W, Di W. Bioinspired tumor-homing nanoplatform for co-delivery of paclitaxel and siRNA-E7 to HPV-related cervical malignancies for synergistic remedy. Theranostics. 2020;10:3325.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, Fang RH, Gao W, Zhang L. Neutrophil membrane-coated nanoparticles inhibit synovial irritation and alleviate joint injury in inflammatory arthritis. Nat Nanotechnol. 2018;13:1182–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Tang J, Shen D, Caranasos TG, Wang Z, Vandergriff AC, Allen TA, Hensley MT, Dinh P-U, Cores J, Li T-S. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:1–9.


    Google Scholar
     

  • 61.

    Li L-L, Xu J-H, Qi G-B, Zhao X, Yu F, Wang H. Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic supply. ACS Nano. 2014;8:4975–83.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem cell membrane-coated nanogels for extremely environment friendly in vivo tumor focused drug supply. Small. 2016;12:4056–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Zhai Y, Ran W, Su J, Lang T, Meng J, Wang G, Zhang P, Li Y. Traceable bioinspired nanoparticle for the therapy of metastatic breast most cancers by way of NIR-trigged intracellular supply of methylene blue and cisplatin. Adv Mater. 2018;30:1802378.


    Google Scholar
     

  • 64.

    Rao L, Wang W, Meng Q-F, Tian M, Cai B, Wang Y, Li A, Zan M, Xiao F, Bu L-L. A biomimetic nanodecoy traps Zika virus to forestall viral an infection and fetal microcephaly growth. Nano Lett. 2018;19:2215–22.

    PubMed 

    Google Scholar
     

  • 65.

    Xie J, Shen Q, Huang Ok, Zheng T, Cheng L, Zhang Z, Yu Y, Liao G, Wang X, Li C. Oriented meeting of cell-mimicking nanoparticles by way of a molecular affinity technique for focused drug supply. ACS Nano. 2019;13:5268–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Nie D, Dai Z, Li J, Yang Y, Xi Z, Wang J, Zhang W, Qian Ok, Guo S, Zhu C. Most cancers-cell-membrane-coated nanoparticles with a yolk–shell construction increase most cancers chemotherapy. Nano Lett. 2019;20:936–46.

    PubMed 

    Google Scholar
     

  • 67.

    Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers: assessment of merchandise and trials. Artif Organs. 2010;34:622–34.

    PubMed 

    Google Scholar
     

  • 68.

    Zou MZ, Liu WL, Gao F, Bai XF, Chen HS, Zeng X, Zhang XZ. Synthetic pure killer cells for particular tumor inhibition and renegade macrophage re-education. Adv Mater. 2019;31:1904495.

    CAS 

    Google Scholar
     

  • 69.

    Watermann A, Brieger J. Mesoporous silica nanoparticles as drug supply autos in most cancers. Nanomaterials. 2017;7:189.

    PubMed Central 

    Google Scholar
     

  • 70.

    Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic functions. Biomed Pharmacother. 2019;109:1100–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Xuan M, Shao J, Zhao J, Li Q, Dai L, Li J. Cowl image: magnetic mesoporous silica nanoparticles cloaked by crimson blood cell membranes: functions in most cancers remedy. Angew Chem Int Ed. 2018;57:5955–5955.

    CAS 

    Google Scholar
     

  • 72.

    Cai D, Liu L, Han C, Ma X, Qian J, Zhou J, Zhu W. Most cancers cell membrane-coated mesoporous silica loaded with superparamagnetic ferroferric oxide and Paclitaxel for the mix of Chemo/Magnetocaloric remedy on MDA-MB-231 cells. Sci Rep. 2019;9:1–10.


    Google Scholar
     

  • 73.

    Hao N, Yang H, Li L, Li L, Tang F. The form impact of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. New J Chem. 2014;38:4258–66.

    CAS 

    Google Scholar
     

  • 74.

    Hu C-MJ, Fang RH, Copp J, Luk BT, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol. 2013;8:336–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Li J, Ai Y, Wang L, Bu P, Sharkey CC, Wu Q, Wun B, Roy S, Shen X, King MR. Focused drug supply to circulating tumor cells by way of platelet membrane-functionalized particles. Biomaterials. 2016;76:52–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Meng Q-F, Rao L, Zan M, Chen M, Yu G-T, Wei X, Wu Z, Solar Y, Guo S-S, Zhao X-Z. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor remedy. Nanotechnology. 2018;29:134004.

    PubMed 

    Google Scholar
     

  • 77.

    Lai P-Y, Huang R-Y, Lin S-Y, Lin Y-H, Chang C-W. Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic functions. RSC Adv. 2015;5:98222–30.

    CAS 

    Google Scholar
     

  • 78.

    Zhu J, Zhang M, Zheng D, Hong S, Feng J, Zhang X-Z. A common method to render nanomedicine with organic id derived from cell membranes. Biomacromol. 2018;19:2043–52.

    CAS 

    Google Scholar
     

  • 79.

    Cook dinner TR, Zheng Y-R, Stang PJ. Steel–natural frameworks and self-assembled supramolecular coordination complexes: evaluating and contrasting the design, synthesis, and performance of steel–natural supplies. Chem Rev. 2013;113:734–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Hoop M, Walde CF, Riccò R, Mushtaq F, Terzopoulou A, Chen X-Z, deMello AJ, Doonan CJ, Falcaro P, Nelson BJ. Biocompatibility traits of the steel natural framework ZIF-8 for therapeutical functions. Appl Mater Right this moment. 2018;11:13–21.


    Google Scholar
     

  • 81.

    Huang J, Shen H, Wu J, Hu X, Zhu Z, Lv X, Liu Y, Wang Y. Backbone Explorer: a deep studying based mostly totally automated program for environment friendly and dependable quantifications of the vertebrae and discs on sagittal lumbar backbone MR pictures. Backbone J. 2020;20:590–9.

    PubMed 

    Google Scholar
     

  • 82.

    Carnovale C, Bryant G, Shukla R, Bansal V. Figuring out tendencies in gold nanoparticle toxicity and uptake: measurement, form, capping ligand, and organic corona. ACS Omega. 2019;4:242–56.

    CAS 

    Google Scholar
     

  • 83.

    Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30:1706759.


    Google Scholar
     

  • 84.

    Zhang X, He S, Ding B, Qu C, Zhang Q, Chen H, Solar Y, Fang H, Lengthy Y, Zhang R. Most cancers cell membrane-coated uncommon earth doped nanoparticles for tumor surgical procedure navigation in NIR-II imaging window. Chem Eng J. 2020;385:123959.

    CAS 

    Google Scholar
     

  • 85.

    Ma W, Zhu D, Li J, Chen X, Xie W, Jiang X, Wu L, Wang G, Xiao Y, Liu Z. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane gives excessive specificity for hepatocellular carcinoma photothermal remedy therapy. Theranostics. 2020;10:1281.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Mishra P, Jain N. Folate conjugated doxorubicin-loaded membrane vesicles for improved most cancers remedy. Drug Deliv. 2003;10:277–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Xuan M, Shao J, Dai L, Li J, He Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo extended circulation life and enhanced most cancers photothermal remedy. ACS Appl Mater Interfaces. 2016;8:9610–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Michael M, Vermeren S. A neutrophil-centric view of chemotaxis. Essays Biochem. 2019;63:607–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Sekeres J, Zarsky V. 180 years of the cell: from Matthias Jakob Schleiden to the cell biology of the twenty-first century. In: Ideas in cell biology-history and evolution. Berlin: Springer; 2018. p. 7–37.


    Google Scholar
     

  • 90.

    Goñi FM. The essential construction and dynamics of cell membranes: An replace of the Singer-Nicolson mannequin. Biochim Biophys Acta (BBA) Biomembr. 2014;1838:1467–76.


    Google Scholar
     

  • 91.

    Shi Y, Xie F, Rao P, Qian H, Chen R, Chen H, Li D, Mu D, Zhang L, Lv P. TRAIL-expressing cell membrane nanovesicles as an anti-inflammatory platform for rheumatoid arthritis remedy. J Contr Rel. 2020;320:304–13.

    CAS 

    Google Scholar
     

  • 92.

    Han Y, Pan H, Li W, Chen Z, Ma A, Yin T, Liang R, Chen F, Ma Y, Jin Y. T cell membrane mimicking nanoparticles with bioorthogonal concentrating on and immune recognition for enhanced photothermal remedy. Adv Sci. 2019;6:1900251.


    Google Scholar
     

  • 93.

    Lv P, Liu X, Chen X, Liu C, Zhang Y, Chu C, Wang J, Wang X, Chen X, Liu G. Genetically engineered cell membrane nanovesicles for oncolytic adenovirus supply: a flexible platform for most cancers virotherapy. Nano Lett. 2019;19:2993–3001.

    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Zhang X, Angsantikul P, Ying M, Zhuang J, Zhang Q, Wei X, Jiang Y, Zhang Y, Dehaini D, Chen M. Distant loading of small-molecule therapeutics into cholesterol-enriched cell-membrane-derived vesicles. Angew Chem Int Ed. 2017;56:14075–9.

    CAS 

    Google Scholar
     

  • 95.

    Peng L-H, Zhang Y-H, Han L-J, Zhang C-Z, Wu J-H, Wang X-R, Gao J-Q, Mao Z-W. Cell membrane capsules for encapsulation of chemotherapeutic and most cancers cell concentrating on in vivo. ACS Appl Mater Interfaces. 2015;7:18628–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Zhou H, Fan Z, Lemons PK, Cheng H. A facile method to functionalize cell membrane-coated nanoparticles. Theranostics. 2016;6:1012.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Chai Z, Ran D, Lu L, Zhan C, Ruan H, Hu X, Xie C, Jiang Ok, Li J, Zhou J. Ligand-modified cell membrane allows the focused supply of drug nanocrystals to glioma. ACS Nano. 2019;13:5591–601.

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige-Gerges H. Ldl cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Meals Chem Toxicol. 2018;113:40–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Chen Z, Zhao P, Luo Z, Zheng M, Tian H, Gong P, Gao G, Pan H, Liu L, Ma A. Most cancers cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal remedy. ACS Nano. 2016;10:10049–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Tune Y, Huang Z, Liu X, Pang Z, Chen J, Yang H, Zhang N, Cao Z, Liu M, Cao J. Platelet membrane-coated nanoparticle-mediated concentrating on supply of Rapamycin blocks atherosclerotic plaque growth and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice. Nanomed Nanotechnol Biol Med. 2019;15:13–24.

    CAS 

    Google Scholar
     

  • 101.

    Chen H-Y, Deng J, Wang Y, Wu C-Q, Li X, Dai H-W. Hybrid cell membrane-coated nanoparticles: a multifunctional biomimetic platform for most cancers prognosis and remedy. Acta Biomater. 2020;112:1–13.

    PubMed 

    Google Scholar
     

  • 102.

    Liang X, Ye X, Wang C, Xing C, Miao Q, Xie Z, Chen X, Zhang X, Zhang H, Mei L. Photothermal most cancers immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Contr Rel. 2019;296:150–61.

    CAS 

    Google Scholar
     

  • 103.

    Dehaini D, Wei X, Fang RH, Masson S, Angsantikul P, Luk BT, Zhang Y, Ying M, Jiang Y, Kroll AV. Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater. 2017;29:1606209.


    Google Scholar
     

  • 104.

    St John AE, Newton JC, Martin EJ, Mohammed BM, Contaifer D Jr, Saunders JL, Brophy GM, Spiess BD, Ward KR, Brophy DF. Platelets retain inducible alpha granule secretion by P-selectin expression however exhibit mechanical dysfunction throughout trauma-induced coagulopathy. J Thromb Haemost. 2019;17:771–81.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Solar D, Chen J, Wang Y, Ji H, Peng R, Jin L, Wu W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug supply. Theranostics. 2019;9:6885.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Pitchaimani A, Nguyen TDT, Aryal S. Pure killer cell membrane infused biomimetic liposomes for focused tumor remedy. Biomaterials. 2018;160:124–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Minasyan H. Phagocytosis and oxycytosis: two arms of human innate immunity. Immunol Res. 2018;66:271–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Wang H, Solar Y, Zhou X, Chen C, Jiao L, Li W, Gou S, Li Y, Du J, Chen G, et al. CD47/SIRPα blocking peptide identification and synergistic impact with irradiation for most cancers immunotherapy. J Immunother Most cancers. 2020;8:e000905.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 109.

    Cao Z, Cheng S, Wang X, Pang Y, Liu J. Camouflaging micro organism by wrapping with cell membranes. Nat Commun. 2019;10:1–10.


    Google Scholar
     

  • 110.

    Liu J-M, Zhang D-D, Fang G-Z, Wang S. Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug supply. Biomaterials. 2018;165:39–47.

    PubMed 

    Google Scholar
     

  • 111.

    Ren X, Zheng R, Fang X, Wang X, Zhang X, Yang W, Sha X. Purple blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal remedy. Biomaterials. 2016;92:13–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Rao L, Meng Q-F, Bu L-L, Cai B, Huang Q, Solar Z-J, Zhang W-F, Li A, Guo S-S, Liu W. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl Mater Interfaces. 2017;9:2159–68.

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    Su J, Solar H, Meng Q, Yin Q, Tang S, Zhang P, Chen Y, Zhang Z, Yu H, Li Y. Lengthy circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for concurrently inhibiting progress and lung metastasis of breast most cancers. Adv Func Mater. 2016;26:1243–52.

    CAS 

    Google Scholar
     

  • 114.

    Fu S, Liang M, Wang Y, Cui L, Gao C, Chu X, Liu Q, Feng Y, Gong W, Yang M. Twin-modified novel biomimetic nanocarriers enhance concentrating on and therapeutic efficacy in glioma. ACS Appl Mater Interfaces. 2018;11:1841–54.


    Google Scholar
     

  • 115.

    Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang Ok, Su B, Ruan H, Ran D, Fang RH. A facile method to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug supply. J Contr Rel. 2017;264:102–11.

    CAS 

    Google Scholar
     

  • 116.

    Jiang Q, Luo Z, Males Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W. Purple blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal remedy. Biomaterials. 2017;143:29–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Chen W, Zeng Ok, Liu H, Ouyang J, Wang L, Liu Y, Wang H, Deng L, Liu YN. Cell membrane camouflaged hole prussian blue nanoparticles for synergistic photothermal-/chemotherapy of most cancers. Adv Func Mater. 2017;27:1605795.


    Google Scholar
     

  • 118.

    Li B, Wang F, Gui L, He Q, Yao Y, Chen H. The potential of biomimetic nanoparticles for tumor-targeted drug supply. Nanomedicine. 2018;13:2099–118.

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Rosales C. Neutrophil: a cell with many roles in irritation or a number of cell sorts? Entrance Physiol. 2018;9:113.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Morikis VA, Simon SI. Neutrophil mechanosignaling promotes integrin engagement with endothelial cells and motility inside infected vessels. Entrance Immunol. 2018;9:2774.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    He Z, Zhang Y, Feng N. Cell membrane-coated nanosized lively focused drug supply techniques homing to tumor cells: a assessment. Mater Sci Eng C. 2020;106:110298.

    CAS 

    Google Scholar
     

  • 122.

    Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, Wei Z, Wang L, Kong L, Solar H. Neutrophil-mediated anticancer drug supply for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12:692–700.

    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Cao X, Hu Y, Luo S, Wang Y, Gong T, Solar X, Fu Y, Zhang Z. Neutrophil-mimicking therapeutic nanoparticles for focused chemotherapy of pancreatic carcinoma. Acta Pharmaceut Sin B. 2019;9:575–89.


    Google Scholar
     

  • 124.

    Combes F, Meyer E, Sanders NN. Immune cells as tumor drug supply autos. J Management Rel. 2020;327:70–87.

    CAS 

    Google Scholar
     

  • 125.

    Wu M, Le W, Mei T, Wang Y, Chen B, Liu Z, Xue C. Cell membrane camouflaged nanoparticles: a brand new biomimetic platform for most cancers photothermal remedy. Int J Nanomed. 2019;14:4431.

    CAS 

    Google Scholar
     

  • 126.

    Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and performance in well being and illness. J Cell Physiol. 2018;233:6425–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Najafi M, Hashemi Goradel N, Farhood B, Salehi E, Nashtaei MS, Khanlarkhani N, Khezri Z, Majidpoor J, Abouzaripour M, Habibi M. Macrophage polarity in most cancers: a assessment. J Cell Biochem. 2019;120:2756–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Hu C, Lei T, Wang Y, Cao J, Yang X, Qin L, Liu R, Zhou Y, Tong F, Umeshappa CS. Phagocyte-membrane-coated and laser-responsive nanoparticles management major and metastatic most cancers by inducing anti-tumor immunity. Biomaterials. 2020;255:120159.

    CAS 
    PubMed 

    Google Scholar
     

  • 129.

    Homosexual LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Most cancers. 2011;11:123–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    De Witt SM, Swieringa F, Cavill R, Lamers MM, Van Kruchten R, Mastenbroek T, Baaten C, Coort S, Pugh N, Schulz A. Identification of platelet perform defects by multi-parameter evaluation of thrombus formation. Nat Commun. 2014;5:1–13.


    Google Scholar
     

  • 131.

    Nelson VS, Jolink A-TC, Amini SN, Zwaginga JJ, Netelenbos T, Semple JW, Porcelijn L, de Haas M, Schipperus MR, Kapur R. Platelets in ITP: victims answerable for their very own destiny? Cells. 2021;10:3235.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Chen S, Lv M, Fang S, Ye W, Gao Y, Xu Y. Poly (I: C) enhanced anti-cervical most cancers immunities induced by dendritic cells-derived exosomes. Int J Biol Macromol. 2018;113:1182–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 133.

    Shang Y, Wang Q, Wu B, Zhao Q, Li J, Huang X, Chen W, Gui R. Platelet-membrane-camouflaged black phosphorus quantum dots improve anticancer impact mediated by apoptosis and autophagy. ACS Appl Mater Interfaces. 2019;11:28254–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 134.

    Wu H, Mu X, Liu L, Wu H, Hu X, Chen L, Liu J, Mu Y, Yuan F, Liu W. Bone marrow mesenchymal stem cells-derived exosomal microRNA-193a reduces cisplatin resistance of non-small cell lung most cancers cells by way of concentrating on LRRC1. Cell Demise Dis. 2020;11:1–14.

    CAS 

    Google Scholar
     

  • 135.

    Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key position in most cancers development. Developments Mol Med. 2014;20:332–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Gordon-Alonso M, Hirsch T, Wildmann C, van der Bruggen P. Galectin-3 captures interferon-gamma within the tumor matrix lowering chemokine gradient manufacturing and T-cell tumor infiltration. Nat Commun. 2017;8:1–15.

    CAS 

    Google Scholar
     

  • 137.

    Hanahan D, Weinberg RA. Hallmarks of most cancers: the following era. Cell. 2011;144:646–74.

    CAS 

    Google Scholar
     

  • 138.

    Zhang J, Miao Y, Ni W, Xiao H, Zhang J. Most cancers cell membrane coated silica nanoparticles loaded with ICG for tumour particular photothermal remedy of osteosarcoma. Artif Cells Nanomed Biotechnol. 2019;47:2298–305.

    CAS 
    PubMed 

    Google Scholar
     

  • 139.

    Rao L, Yu GT, Meng QF, Bu LL, Tian R, Lin LS, Deng H, Yang W, Zan M, Ding J. Most cancers cell membrane-coated nanoparticles for customized remedy in patient-derived xenograft fashions. Adv Func Mater. 2019;29:1905671.

    CAS 

    Google Scholar
     

  • 140.

    Jin J, Krishnamachary B, Barnett JD, Chatterjee S, Chang D, Mironchik Y, Wildes F, Jaffee EM, Nimmagadda S, Bhujwalla ZM. Human most cancers cell membrane-coated biomimetic nanoparticles cut back fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl Mater Interfaces. 2019;11:7850–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 141.

    Wang C, Wu B, Wu Y, Tune X, Zhang S, Liu Z. Camouflaging nanoparticles with mind metastatic tumor cell membranes: a brand new technique to traverse blood–mind barrier for imaging and remedy of mind tumors. Adv Func Mater. 2020;30:1909369.

    CAS 

    Google Scholar
     

  • 142.

    Kumar P, Van Treuren T, Ranjan AP, Chaudhary P, Vishwanatha JK. In vivo imaging and biodistribution of close to infrared dye loaded brain-metastatic-breast-cancer-cell-membrane coated polymeric nanoparticles. Nanotechnology. 2019;30:265101.

    CAS 
    PubMed 

    Google Scholar
     

  • 143.

    Ribas A. Adaptive immune resistance: how most cancers protects from immune assault. Most cancers Discov. 2015;5:915–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 144.

    Zhang L, Li R, Chen H, Wei J, Qian H, Su S, Shao J, Wang L, Qian X, Liu B. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles mixed with low-dose irradiation: a brand new method to boost drug concentrating on in gastric most cancers. Int J Nanomed. 2017;12:2129.

    CAS 

    Google Scholar
     

  • 145.

    Um W, Ko H, You DG, Lim S, Kwak G, Shim MK, Yang S, Lee J, Tune Y, Kim Ok, Park JH. Necroptosis-inducible polymeric nanobubbles for enhanced most cancers sonoimmunotherapy. Adv Mater. 2020;32:1907953.

    CAS 

    Google Scholar
     

  • 146.

    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.


    Google Scholar
     

  • 147.

    Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, Steven NM, Kerr DJ, Younger LS, Adams DH. A part II research of adoptive immunotherapy utilizing dendritic cells pulsed with tumor lysate in sufferers with hepatocellular carcinoma. Hepatology. 2009;49:124–32.

    PubMed 

    Google Scholar
     

  • 148.

    Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Entrance Immunol. 2014;5:518.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 149.

    Mbongue JC, Nieves HA, Torrez TW, Langridge WH. The position of dendritic cell maturation within the induction of insulin-dependent diabetes mellitus. Entrance Immunol. 2017;8:327.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    Gardner A, Ruffell B. Dendritic cells and most cancers immunity. Developments Immunol. 2016;37:855–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 151.

    Cheng S, Xu C, Jin Y, Li Y, Zhong C, Ma J, Yang J, Zhang N, Li Y, Wang C. Synthetic mini dendritic cells enhance T cell-based immunotherapy for ovarian most cancers. Adv Sci. 2020;7:1903301.

    CAS 

    Google Scholar
     

  • 152.

    Zhang C, Zhang J, Shi G, Tune H, Shi S, Zhang X, Huang P, Wang Z, Wang W, Wang C. A lightweight responsive nanoparticle-based supply system utilizing pheophorbide a graft polyethylenimine for dendritic cell-based most cancers immunotherapy. Mol Pharm. 2017;14:1760–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 153.

    Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical functions. Biomaterials. 2017;128:69–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 154.

    Solar Q, Wu J, Jin L, Hong L, Wang F, Mao Z, Wu M. Most cancers cell membrane-coated gold nanorods for photothermal remedy and radiotherapy on oral squamous most cancers. J Mater Chem B. 2020;8:7253–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 155.

    Rao L, Bu LL, Meng QF, Cai B, Deng WW, Li A, Li Ok, Guo SS, Zhang WF, Liu W. Antitumor platelet-mimicking magnetic nanoparticles. Adv Func Mater. 2017;27:1604774.


    Google Scholar
     

  • 156.

    Wu H-H, Zhou Y, Tabata Y, Gao J-Q. Mesenchymal stem cell-based drug supply technique: from cells to biomimetic. J Contr Rel. 2019;294:102–13.

    CAS 

    Google Scholar
     

  • 157.

    He H, Guo C, Wang J, Korzun WJ, Wang X-Y, Ghosh S, Yang H. Leutusome: a biomimetic nanoplatform integrating plasma membrane parts of leukocytes and tumor cells for remarkably enhanced strong tumor homing. Nano Lett. 2018;18:6164–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 158.

    Solar M, Duan Y, Ma Y, Zhang Q. Most cancers cell-erythrocyte hybrid membrane coated gold nanocages for close to infrared light-activated photothermal/radio/chemotherapy of breast most cancers. Int J Nanomed. 2020;15:6749.

    CAS 

    Google Scholar
     

  • 159.

    Gong C, Yu X, You B, Wu Y, Wang R, Han L, Wang Y, Gao S, Yuan Y. Macrophage-cancer hybrid membrane-coated nanoparticles for concentrating on lung metastasis in breast most cancers remedy. J Nanobiotechnol. 2020;18:1–17.


    Google Scholar
     

  • 160.

    Li M, Xu Z, Zhang L, Cui M, Zhu M, Guo Y, Solar R, Han J, Tune E, He Y, Su Y. Focused noninvasive therapy of choroidal neovascularization by hybrid cell-membrane-cloaked biomimetic nanoparticles. ACS Nano. 2021;15:9808–19.

    PubMed 

    Google Scholar
     

  • 161.

    Giampietro C, Taddei A, Corada M, Sarra-Ferraris GM, Alcalay M, Cavallaro U, Orsenigo F, Lampugnani MG, Dejana E. Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood J Am Soc Hematol. 2012;119:2159–70.

    CAS 

    Google Scholar
     

  • 162.

    Pisano S, Pierini I, Gu J, Gazze A, Francis LW, Gonzalez D, Conlan RS, Corradetti B. Immune (Cell) derived exosome mimetics (IDEM) as a therapy for ovarian most cancers. Entrance Cell Dev Biol. 2020;8:553576.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 163.

    Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered extracellular vesicles as a dependable software in most cancers nanomedicine. Cancers. 1979;2019:11.


    Google Scholar
     

  • 164.

    Jin Ok, Luo Z, Zhang B, Pang Z. Biomimetic nanoparticles for irritation concentrating on. Acta Pharmaceut Sin B. 2018;8:23–33.


    Google Scholar
     

  • 165.

    Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for most cancers immunotherapy and drug supply. Adv Mater. 2020;32:2002054.

    CAS 

    Google Scholar
     

  • [ad_2]

    Previous Article

    Google Says It is Not Attainable To Forestall Outages

    Next Article

    ADU 01122: Can I Fly Above a 450 Ft Constructing in Class B Airspace?

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨