Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for therapeutic MRSA-infected diabetic wounds | Journal of Nanobiotechnology
18 mins read

Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for therapeutic MRSA-infected diabetic wounds | Journal of Nanobiotechnology


  • 1.

    Boulton AJM, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The worldwide burden of diabetic foot illness. Lancet. 2005;366:1719–24.

    PubMed 

    Google Scholar
     

  • 2.

    Matoori S, Veves A, Mooney DJ. Superior bandages for diabetic wound therapeutic. Sci Transl Med. 2021;13(585):eabe4839.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Thanigaimani S, Singh T, Golledge J. Topical oxygen remedy for diabetes-related foot ulcers: a scientific overview and meta-analysis. Diabet Med. 2021;38(8):e14585.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Jarl G, van Netten JJ, Lazzarini PA, Crews RT, Najafi B, Mueller MJ. Ought to weight-bearing exercise be decreased throughout therapeutic of plantar diabetic foot ulcers, even when utilizing acceptable offloading gadgets. Diabetes Res Clin Pract. 2021;175:108733.

    PubMed 

    Google Scholar
     

  • 5.

    Chen G, Bai Y, Li Z, Wang F, Fan X, Zhou X. Bacterial extracellular vesicle-coated multi-antigenic nanovaccines defend towards drug-resistant Staphylococcus aureus an infection by modulating antigen processing and presentation pathways. Theranostics. 2020;10:7131–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Fazli M, Bjarnsholt T, Kirketerp-Møller Okay, Jørgensen A, Andersen CB, Givskov M, Tolker-Nielsen T. Quantitative evaluation of the mobile inflammatory response towards biofilm micro organism in continual wounds. Wound Restore Regen. 2011;19:387–91.

    PubMed 

    Google Scholar
     

  • 7.

    Nguyen KT, Seth AK, Hong SJ, Geringer MR, Xie P, Leung KP, Mustoe TA, Galiano RD. Poor cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound therapeutic in diabetic, biofilm-containing continual wounds. Wound Restore Regen. 2013;21:833–41.

    PubMed 

    Google Scholar
     

  • 8.

    Leaper D, Assadian O, Edmiston CE. Strategy to continual wound infections. Br J Dermatol. 2015;173:351–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Yang C, Goss SG, Alcantara S, Schultz G, Ii JL. Impact of damaging stress wound Remedy with instillation on bioburden in chronically contaminated wounds. Wounds. 2017;29(8):240–6.

    PubMed 

    Google Scholar
     

  • 10.

    Lin CJ, Lan YM, Ou MQ, Ji LQ, Lin SD. Expression of miR-217 and HIF-1α/VEGF pathway in sufferers with diabetic foot ulcer and its impact on angiogenesis of diabetic foot ulcer rats. J Endocrinol Make investments. 2019;42:1307–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Zhu Y, Wang Y, Jia Y, Xu J, Chai Y. Roxadustat promotes angiogenesis by way of HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound therapeutic in diabetic rats. Wound Restore Regen. 2019;27:324–34.

    PubMed 

    Google Scholar
     

  • 12.

    Gao W, Solar L, Fu X, Lin Z, Xie W, Zhang W, Zhao F, Chen X. Enhanced diabetic wound therapeutic by electrospun core–sheath fibers loaded with dimethyloxalylglycine. J Mater Chem B. 2018;6:277–88.

    PubMed 

    Google Scholar
     

  • 13.

    Zhou L, Xi Y, Xue Y, Wang M, Liu Y, Guo Y, Lei B. Injectable self-healing antibacterial bioactive polypeptide-based hybrid nanosystems for effectively treating multidrug resistant an infection, skin-tumor remedy, and enhancing wound therapeutic. Adv Funct Mater. 2019;29:1806883.


    Google Scholar
     

  • 14.

    Li J, Liu X, Zhou Z, Tan L, Wang X, Zheng Y, Han Y, Chen D-F, Yeung KWK, Cui Z, et al. Lysozyme-assisted photothermal eradication of methicillin-resistant Staphylococcus aureus an infection and accelerated tissue restore with pure melanosome nanostructures. ACS Nano. 2019;13:11153–67.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile polydopamine platforms: synthesis and promising purposes for floor modification and superior nanomedicine. ACS Nano. 2019;13:8537–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Xu X, Wang S, Wu H, Liu Y, Xu F, Zhao J. A multimodal antimicrobial platform primarily based on MXene for therapy of wound an infection. Colloids Surf B Biointerfaces. 2021;207:111979.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Luo Okay, Wu H, Chen Y, Li J, Zhou L, Yang F, Huang M, An X, Wang S. Preparation of Bi-based hydrogel for multi-modal tumor remedy. Colloids Surf B Biointerfaces. 2021;200:111591.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Guo W, Chen Z, Chen J, Feng X, Yang Y, Huang H, Liang Y, Shen G, Liang Y, Peng C, et al. Biodegradable hole mesoporous organosilica nanotheranostics (HMON) for multi-mode imaging and delicate photo-therapeutic-induced mitochondrial harm on gastric most cancers. J Nanobiotechnol. 2020;18:99.

    CAS 

    Google Scholar
     

  • 19.

    An F, Yang Z, Zheng M, Mei T, Deng G, Guo P, Li Y, Sheng R. Rationally assembled albumin/indocyanine inexperienced nanocomplex for enhanced tumor imaging to information photothermal remedy. J Nanobiotechnol. 2020;18:49.

    CAS 

    Google Scholar
     

  • 20.

    Huang J, Xu Z, Jiang Y, Regulation WC, Dong B, Zeng X, Ma M, Xu G, Zou J, Yang C. Steel natural framework-coated gold nanorod as an on-demand drug supply platform for chemo-photothermal most cancers remedy. J Nanobiotechnol. 2021;19:219.

    CAS 

    Google Scholar
     

  • 21.

    Xu Z, Zhang Y, Zhou W, Wang L, Xu G, Ma M, Liu F, Wang Z, Wang Y, Kong T, et al. NIR-II-activated biocompatible hole nanocarbons for most cancers photothermal remedy. J Nanobiotechnol. 2021;19:137.

    CAS 

    Google Scholar
     

  • 22.

    Cao C, Ge W, Yin J, Yang D, Wang W, Music X, Hu Y, Yin J, Dong X. Mesoporous silica supported silver-bismuth nanoparticles as photothermal brokers for pores and skin an infection synergistic antibacterial remedy. Small. 2020;16:2000436.

    CAS 

    Google Scholar
     

  • 23.

    Wu Q, Wei G, Xu Z, Han J, Xi J, Fan L, Gao L. Mechanistic perception into the light-irradiated carbon capsules as an antibacterial agent. ACS Appl Mater Interfaces. 2018;10:25026–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Chang Y, Cheng Y, Feng Y, Jian H, Wang L, Ma X, Li X, Zhang H. Resonance power transfer-promoted photothermal and photodynamic efficiency of gold-copper sulfide yolk-shell nanoparticles for chemophototherapy of most cancers. Nano Lett. 2018;18:886–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Nie C, Du P, Zhao H, Xie H, Li Y, Yao L, Shi Y, Hu L, Si S, Zhang M, et al. Ag@TiO2 nanoprisms with extremely environment friendly near-infrared photothermal conversion for melanoma remedy. Chem Asian J. 2020;15:148–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Yu P, Han Y, Han D, Liu X, Liang Y, Li Z, Zhu S, Wu S. In-situ sulfuration of Cu-based metal-organic framework for speedy near-infrared gentle sterilization. J Hazard Mater. 2020;390:122126.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Huang L, Xu S, Wang Z, Xue Okay, Su J, Music Y, Chen S, Zhu C, Tang BZ, Ye R. Self-reporting and photothermally enhanced speedy bacterial killing on a laser-induced graphene masks. ACS Nano. 2020;14:12045–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Pang X, Wang J, Tan X, Guo F, Lei M, Ma M, Yu M, Tan F, Li N. Twin-modal imaging-guided theranostic nanocarriers primarily based on indocyanine inexperienced and mTOR inhibitor rapamycin. Acs Appl Mater Interfaces. 2016;13819.

  • 29.

    Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Stimuli-responsive polydopamine-based sensible supplies. Chem Soc Rev; 2021.

  • 30.

    Dong Z, Feng L, Hao Y, Chen M, Gao M, Chao Y, Zhao H, Zhu W, Liu J, Liang C, et al. Synthesis of hole biomineralized CaCO3–polydopamine nanoparticles for multimodal imaging-guided most cancers photodynamic remedy with decreased pores and skin photosensitivity. J Am Chem Soc. 2018;140:2165–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Yang SH, Kang SM, Lee KB, Chung TD, Lee H, Choi IS. Mussel-inspired encapsulation and functionalization of particular person yeast cells. J Am Chem Soc. 2011;133:2795–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Guo Y, Lin C, Xu P, Wu S, Fu X, Xia W, Yao M. AGEs Induced autophagy impairs cutaneous wound therapeutic by way of stimulating macrophage polarization to M1 in diabetes. Sci Rep. 2016;6:36416.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Chan LC, Rossetti M, Miller LS, Filler SG, Johnson CW, Lee HK, Wang H, Gjertson D, Fowler VG, Reed EF, et al. Protecting immunity in recurrent Staphylococcus aureus an infection displays localized immune signatures and macrophage-conferred reminiscence. Proc Natl Acad Sci. 2018;115:E11111.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Davis FM, Kimball A, Boniakowski A, Gallagher Okay. Dysfunctional wound therapeutic in diabetic foot ulcers: new crossroads. Curr Diab Rep. 2018;18:2.

    PubMed 

    Google Scholar
     

  • 35.

    Gu XY, Shen SE, Huang CF, Liu YN, Chen YC, Luo L, Zeng YJ, Wang AP. Impact of activated autologous monocytes/macrophages on wound therapeutic in a rodent mannequin of experimental diabetes. Diabetes Res Clin Pract. 2013;102:53–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Chen SN, Li RR, Cheng C, Xu JY, Jin CX, Gao FR, Wang J, Zhang JE, Zhang JF, Wang H, et al. Pseudomonas aeruginosa an infection alters the macrophage phenotype switching course of throughout wound therapeutic in diabetic mice. Cell Biol Int. 2018;42(7):877–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Hu G, Su Y, Kang B, Fan Z, Dong T, Brown D, Cheah J, Wittrup Okay, Chen J. Excessive-throughput phenotypic display and transcriptional evaluation determine new compounds and targets for macrophage reprogramming. Nat Commun. 2021;12:773.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Gan J, Liu C, Li H, Wang S, Wang Z, Kang Z, Huang Z, Zhang J, Wang C, Lv D, et al. Accelerated wound therapeutic in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials. 2019;219:119340.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound therapeutic agent. Life Sci. 2014;116:1–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Gupta A, Keddie DJ, Kannappan V, Gibson H, Khalil IR, Kowalczuk M, Martin C, Shuai X, Radecka I. Manufacturing and characterisation of bacterial cellulose hydrogels loaded with curcumin encapsulated in cyclodextrins as wound dressings. Eur Polym J. 2019;118:437–50.

    CAS 

    Google Scholar
     

  • 41.

    Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G, Kowalczuk M, Martin C, Radecka I. Synthesis of silver nanoparticles utilizing curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing purposes. Biomacromol. 2020;21:1802–11.

    CAS 

    Google Scholar
     

  • 42.

    Xi Y, Ge J, Wang M, Chen M, Niu W, Cheng W, Xue Y, Lin C, Lei B. Bioactive anti-inflammatory, antibacterial, antioxidative silicon-based nanofibrous dressing permits cutaneous tumor photothermo-chemo remedy and infection-induced wound therapeutic. ACS Nano. 2020;14:2904–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Viaña-Mendieta P, Sánchez M, Benavides J. Rational number of bioactive ideas for wound therapeutic purposes: development elements and antioxidants. Int Wound J. 2021. https://doi.org/10.1111/iwj.13602.

    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Chen F, Guo N, Cao G, Zhou J, Yuan Z. Molecular evaluation of curcumin-induced polarization of murine RAW264.7 macrophages. J Cardiovasc Pharmacol. 2014;63:544–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Dou G, Tian R, Liu X, Yuan P, Ye Q, Liu J, Liu S, Zhou J, Deng Z, Chen X, et al. Chimeric apoptotic our bodies functionalized with pure membrane and modular supply system for irritation modulation. Sci Adv. 2020;6:eaba2987.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Zhou Y, Zhang T, Wang X, Wei X, Chen Y, Guo L, Zhang J, Wang C. Curcumin modulates macrophage polarization by way of the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cell Physiol Biochem. 2015;36(2):631–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Xue J, Zheng W, Wang L, Jin Z. Scalable fabrication of polydopamine nanotubes primarily based on curcumin crystals. ACS Biomater Sci Eng. 2016;2:489–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Martakov IS, Shevchenko OG. Synthesis and enhanced antioxidant and membrane-protective exercise of curcumin@AlOOH nanoparticles. J Inorg Biochem. 2020;210:111168.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Awal R, Rahman MA, Rahaman MS, Alam Okay, Subhan MA. Synthesis and characterization of metallic complexes containing curcumin (C21H20O6) and examine of their anti-microbial actions and DNA-binding properties. J Sci Res. 2013;6:97–109.


    Google Scholar
     

  • 50.

    Iqbal Z, Lai EPC, Avis TJ. Antimicrobial impact of polydopamine coating on Escherichia coli. J Mater Chem. 2012;22:21608–12.

    CAS 

    Google Scholar
     

  • 51.

    Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. pH-sensitive supply automobile primarily based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for focused most cancers remedy. ACS Appl Mater Interfaces. 2017;9:18462–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Niyonshuti II, Krishnamurthi VR, Okyere D, Music L, Benamara M, Tong X, Wang Y, Chen J. Polydopamine floor coating synergizes the antimicrobial exercise of silver nanoparticles. ACS Appl Mater Interfaces. 2020;12:40067–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Solar Q, Yang Z, Lin M, Peng Y, Wang R, Du Y, Zhou Y, Li J, Qi X. Phototherapy and anti-GITR antibody-based remedy synergistically reinvigorate immunogenic cell dying and reject established cancers. Biomaterials. 2021;269:120648.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Martakov IS, Torlopov MA, Mikhaylov VI, Krivoshapkina EF, Silant’ev VE, Krivoshapkin PV. Interplay of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid buildings formation. J Sol Gel Sci Technol. 2017;88:13–21.


    Google Scholar
     

  • 55.

    Renard D, Tian S, Ahmadivand A, DeSantis CJ, Clark BD, Nordlander P, Halas NJ. Polydopamine-stabilized aluminum nanocrystals: aqueous stability and benzo[a]pyrene detection. ACS Nano. 2019;13:3117–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Prasad R, Gupta KM, Poornachary SK, Dalvi SV. Elucidating the polymorphic habits of curcumin throughout antisolvent crystallization: insights from Raman spectroscopy and molecular modeling. Cryst Development Des. 2020;20:6008–23.

    CAS 

    Google Scholar
     

  • 57.

    Liu Y, Ai Okay, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an environment friendly near-infrared photothermal therapeutic agent for in vivo most cancers remedy. Adv Mater. 2013;25:1353–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Roldán ML, Centeno SA, Rizzo A. An improved methodology for the characterization and identification of sepia in artworks by regular Raman and SERS, complemented by FTIR, Py-GC/MS, and XRF. J Raman Spectrosc. 2014;45:1160–71.


    Google Scholar
     

  • 59.

    Della Vecchia NF, Avolio R, Alfè M, Errico ME, Napolitano A, d’Ischia M. Constructing-block variety in polydopamine underpins a multifunctional eumelanin-type platform tunable by way of a quinone management level. Adv Funct Mater. 2013;23:1331–40.

    CAS 

    Google Scholar
     

  • 60.

    Yan LX, Chen LJ, Zhao X, Yan XP. pH switchable nanoplatform for in vivo persistent luminescence imaging and exact photothermal remedy of bacterial an infection. Adv Funct Mater. 2020;30:1909042.

    CAS 

    Google Scholar
     

  • 61.

    Azucena IRC, Roberto JCL, Martin ZR, Rafael CZ, Leonardo HH, Gabriela TP, Araceli CR. Drug susceptibility testing and synergistic antibacterial exercise of curcumin with antibiotics towards enterotoxigenic Escherichia coli. Antibiotics (Basel). 2019;8:43.

    CAS 

    Google Scholar
     

  • 62.

    Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, Huang L. Antibacterial mechanism of curcumin: a overview. Chem Biodivers. 2020;17:e2000171.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Gao Q, Zhang X, Yin W, Ma D, Xie C, Zheng L, Dong X, Mei L, Yu J, Wang C, et al. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide launch and photothermal actions for superior bacteria-infected wound remedy. Small. 2018;14:e1802290.

    PubMed 

    Google Scholar
     

  • 64.

    Liu M, He D, Yang T, Liu W, Mao L, Zhu Y, Wu J, Luo G, Deng J. An environment friendly antimicrobial depot for infectious site-targeted chemo-photothermal remedy. J Nanobiotechnol. 2018;16:23.


    Google Scholar
     

  • 65.

    Hu C, Zhang F, Lengthy L, Kong Q, Luo R, Wang Y. Twin-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial exercise and accelerated wound therapeutic. J Management Launch. 2020;324:204–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Kim H, Wang SY, Kwak G, Yang Y, Solar HK. Exosome-guided phenotypic swap of M1 to M2 macrophages for cutaneous wound therapeutic. Adv Sci. 2019;6(20):1900513.

    CAS 

    Google Scholar
     

  • 67.

    Zhu Y, Ma Z, Kong L, He Y, Chan H, Li H. Modulation of macrophages by bioactive glass/sodium alginate hydrogel is essential in pores and skin regeneration enhancement. Biomaterials. 2020;256:120216.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Qiao Y, Ping Y, Zhang H, Zhou B, Liu F, Yu Y, Xie T, Li W, Zhong D, Zhang Y, et al. Laser-activatable CuS nanodots to deal with multidrug-resistant micro organism and launch copper ion to speed up therapeutic of contaminated continual nonhealing wounds. ACS Appl Mater Interfaces. 2019;11:3809–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Vaghasiya Okay, Sharma A, Kumar Okay, Ray E, Adlakha S, Katare OP, Hota SK, Verma RK. Heparin-encapsulated metered-dose topical “nano-spray gel” liposomal formulation ensures speedy on-site administration of frostbite damage by inflammatory cytokines scavenging. ACS Biomater Sci Eng. 2019;5:6617–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Yu H, Peng J, Xu Y, Chang J, Li H. Bioglass activated pores and skin tissue engineering constructs for wound therapeutic. ACS Appl Mater Interfaces. 2016;8:703–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, Sahebkar A. Proof of curcumin and curcumin analogue results in pores and skin ailments: a story overview. J Cell Physiol. 2019;234:1165–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Wang X, Ma B, Xue J, Wu J, Chang J, Wu C. Faulty black nano-titania thermogels for cutaneous tumor-induced remedy and therapeutic. Nano Lett. 2019;19:2138–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Deng RH, Zou MZ, Zheng D, Peng SY, Liu W, Bai XF, Chen HS, Solar Y, Zhou PH, Zhang XZ. Nanoparticles from cuttlefish ink inhibit tumor development by synergizing immunotherapy and photothermal remedy. ACS Nano. 2019;13:8618–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, Zhou W. Focused silver nanoparticles for rheumatoid arthritis remedy by way of macrophage apoptosis and Re-polarization. Biomaterials. 2021;264:120390.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Zhao H, Huang J, Li Y, Lv X, Zhou H, Wang H, Xu Y, Wang C, Wang J, Liu Z. ROS-scavenging hydrogel to advertise therapeutic of micro organism contaminated diabetic wounds. Biomaterials. 2020;258:120286.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Wu J, Zhu J, He C, Xiao Z, Ye J, Li Y, Chen A, Zhang H, Li X, Lin L, et al. Comparative examine of heparin-poloxamer hydrogel modified bFGF and aFGF for in vivo wound therapeutic effectivity. ACS Appl Mater Interfaces. 2016;8:18710–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Liu S, Yu J, Zhang Q, Lu H, Qiu X, Zhou D, Qi Y, Huang Y. Twin cross-linked HHA hydrogel provides and regulates MPhi2 for synergistic enchancment of immunocompromise and impaired angiogenesis to boost diabetic continual wound therapeutic. Biomacromol. 2020;21:3795–806.

    CAS 

    Google Scholar
     

  • 78.

    Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q. Conductive antibacterial hemostatic multifunctional scaffolds primarily based on Ti3C2Tx MXene nanosheets for selling multidrug-resistant bacteria-infected wound therapeutic. ACS Nano. 2021;15:2468–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *