Nanoparticle mobile internalization will not be required for RNA supply to mature plant leaves
9 mins read

Nanoparticle mobile internalization will not be required for RNA supply to mature plant leaves

Nanoparticle mobile internalization will not be required for RNA supply to mature plant leaves


  • 1.

    Liu, Y. et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and sturdy insect resistance in rice. Nat. Biotechnol. 33, 301–305 (2015).

    CAS 

    Google Scholar
     

  • 2.

    Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. Excessive-efficiency TALEN-based gene modifying produces disease-resistant rice. Nat. Biotechnol. 30, 390–392 (2012).

    CAS 

    Google Scholar
     

  • 3.

    Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J. & Schroeder, A. Therapeutic nanoparticles penetrate leaves and ship vitamins to agricultural crops. Sci. Rep. 8, 7589 (2018).


    Google Scholar
     

  • 4.

    Torney, F., Trewyn, B. G., Lin, V. S. Y. & Wang, Okay. Mesoporous silica nanoparticles ship DNA and chemical compounds into crops. Nat. Nanotechnol. 2, 295–300 (2007).

    CAS 

    Google Scholar
     

  • 5.

    Demirer, G. S. et al. Excessive side ratio nanomaterials allow supply of purposeful genetic materials with out DNA integration in mature crops. Nat. Nanotechnol. 14, 456–464 (2019).

    CAS 

    Google Scholar
     

  • 6.

    Kwak, S.-Y. et al. Chloroplast-selective gene supply and expression in planta utilizing chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    CAS 

    Google Scholar
     

  • 7.

    Mitter, N. et al. Clay nanosheets for topical supply of RNAi for sustained safety in opposition to plant viruses. Nat. Vegetation 3, 16207 (2017).

    CAS 

    Google Scholar
     

  • 8.

    Demirer, G. S. et al. Carbon nanocarriers ship siRNA to intact plant cells for environment friendly gene knockdown. Sci. Adv. 6, eaaz0495 (2020).

    CAS 

    Google Scholar
     

  • 9.

    Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature crops. Proc. Natl Acad. Sci. USA 116, 7543 (2019).

    CAS 

    Google Scholar
     

  • 10.

    Lei, W.-X. et al. Development of gold-siRNANPR1 nanoparticles for efficient and fast silencing of NPR1 in Arabidopsis thaliana. RSC Adv. 10, 19300–19308 (2020).

    CAS 

    Google Scholar
     

  • 11.

    Zhang, H. et al. Gold-nanocluster-mediated supply of siRNA to intact plant cells for environment friendly gene knockdown. Nano Lett. https://doi.org/10.1021/acs.nanolett.1c01792 (2021).

  • 12.

    Martin-Ortigosa, S. et al. Mesoporous silica nanoparticle-mediated intracellular Cre protein supply for maize genome modifying by way of loxP web site excision. Plant Physiol. 164, 537–547 (2014).

    CAS 

    Google Scholar
     

  • 13.

    Liu, Q. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009).

    CAS 

    Google Scholar
     

  • 14.

    Bao, W., Wang, J., Wang, Q., O’Hare, D. & Wan, Y. Layered double hydroxide nanotransporter for molecule supply to intact plant cells. Sci. Rep. 6, 26738 (2016).

    CAS 

    Google Scholar
     

  • 15.

    Avellan, A. et al. Nanoparticle dimension and coating chemistry management foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).

    CAS 

    Google Scholar
     

  • 16.

    Spielman-Solar, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).

    CAS 

    Google Scholar
     

  • 17.

    Zhang, S., Gao, H. & Bao, G. Bodily ideas of nanoparticle mobile endocytosis. ACS Nano 9, 8655–8671 (2015).

    CAS 

    Google Scholar
     

  • 18.

    Herd, H. et al. Nanoparticle geometry and floor orientation affect mode of mobile uptake. ACS Nano 7, 1961–1973 (2013).

    CAS 

    Google Scholar
     

  • 19.

    Xie, X., Liao, J., Shao, X., Li, Q. & Lin, Y. The impact of form on mobile uptake of gold nanoparticles within the types of stars, rods, and triangles. Sci. Rep. 7, 3827 (2017).


    Google Scholar
     

  • 20.

    Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Figuring out the dimensions and form dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).

    CAS 

    Google Scholar
     

  • 21.

    Yi, X., Shi, X. & Gao, H. A common legislation for cell uptake of one-dimensional nanomaterials. Nano Lett. 14, 1049–1055 (2014).

    CAS 

    Google Scholar
     

  • 22.

    Huang, C., Zhang, Y., Yuan, H., Gao, H. & Zhang, S. Function of nanoparticle geometry in endocytosis: laying down to face up. Nano Lett. 13, 4546–4550 (2013).

    CAS 

    Google Scholar
     

  • 23.

    Shi, X., von dem Bussche, A., Damage, R. H., Kane, A. B. & Gao, H. Cell entry of one-dimensional nanomaterials happens by tip recognition and rotation. Nat. Nanotechnol. 6, 714–719 (2011).

    CAS 

    Google Scholar
     

  • 24.

    Vácha, R., Martinez-Veracoechea, F. J. & Frenkel, D. Receptor-mediated endocytosis of nanoparticles of varied shapes. Nano Lett. 11, 5391–5395 (2011).


    Google Scholar
     

  • 25.

    Hui, Y. et al. Function of nanoparticle mechanical properties in most cancers drug supply. ACS Nano 13, 7410–7424 (2019).

    CAS 

    Google Scholar
     

  • 26.

    Houston, Okay., Tucker, M. R., Chowdhury, J., Shirley, N. & Little, A. The plant cell wall: a fancy and dynamic construction as revealed by the responses of genes beneath stress circumstances. Entrance Plant Sci. 7, 984 (2016).


    Google Scholar
     

  • 27.

    Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated supply in the direction of advancing plant genetic engineering. Traits Biotechnol. https://doi.org/10.1016/j.tibtech.2018.03.009 (2018).

  • 28.

    Schwab, F. et al. Limitations, pathways and processes for uptake, translocation and accumulation of nanomaterials in crops – essential overview. Nanotoxicology 10, 257–278 (2016).

    CAS 

    Google Scholar
     

  • 29.

    Wang, P., Lombi, E., Zhao, F.-J. & Kopittke, P. M. Nanotechnology: a brand new alternative in plant sciences. Traits Plant Sci. 21, 699–712 (2016).

    CAS 

    Google Scholar
     

  • 30.

    Hubbard, J. D., Lui, A. & Landry, M. P. Multiscale and multidisciplinary method to understanding nanoparticle transport in crops. Curr. Opin. Chem. Eng. 30, 135–143 (2020).


    Google Scholar
     

  • 31.

    Corredor, E. et al. Nanoparticle penetration and transport in dwelling pumpkin crops: in situ subcellular identification. BMC Plant Biol. 9, 45 (2009).


    Google Scholar
     

  • 32.

    Bao, D. P., Oh, Z. G. & Chen, Z. Characterization of silver nanoparticles internalized by Arabidopsis crops utilizing single particle ICP-MS evaluation. Entrance. Plant Sci. https://doi.org/10.3389/fpls.2016.00032 (2016).

  • 33.

    Zhang, P. et al. Form-dependent transformation and translocation of ceria nanoparticles in cucumber crops. Environ. Sci. Technol. Lett. 4, 380–385 (2017).

    CAS 

    Google Scholar
     

  • 34.

    Giraldo, J. P. et al. Plant nanobionics method to reinforce photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    CAS 

    Google Scholar
     

  • 35.

    Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Focused supply of nanomaterials with chemical cargoes in crops enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    CAS 

    Google Scholar
     

  • 36.

    Zhang, X., Servos, M. R. & Liu, J. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA utilizing a pH-assisted and surfactant-free route. J. Am. Chem. Soc. 134, 7266–7269 (2012).

    CAS 

    Google Scholar
     

  • 37.

    Yang, G. et al. Implications of quenching-to-dequenching change in quantitative cell uptake and biodistribution of dye-labeled nanoparticles. Angew. Chem. Int. Ed. 60, 15426–15435 (2021).

    CAS 

    Google Scholar
     

  • 38.

    Sattelmacher, B. The apoplast and its significance for plant mineral diet. New Phytol. 149, 167–192 (2001).

    CAS 

    Google Scholar
     

  • 39.

    Yu, M. et al. Rotation-facilitated speedy transport of nanorods in mucosal tissues. Nano Lett. 16, 7176–7182 (2016).

    CAS 

    Google Scholar
     

  • 40.

    Matsuoka, Okay., Bassham, D. C., Raikhel, N. V. & Nakamura, Okay. Totally different sensitivity to wortmannin of two vacuolar sorting indicators signifies the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130, 1307–1318 (1995).

    CAS 

    Google Scholar
     

  • 41.

    Elkin, S. R. et al. Ikarugamycin: a pure product inhibitor of clathrin-mediated endocytosis. Visitors 17, 1139–1149 (2016).

    CAS 

    Google Scholar
     

  • 42.

    Aniento, F. & Robinson, D. G. Testing for endocytosis in crops. Protoplasma 226, 3–11 (2005).

    CAS 

    Google Scholar
     

  • 43.

    Reynolds, G. D., Wang, C., Pan, J. & Bednarek, S. Y. Inroads into internalization: 5 years of endocytic exploration. Plant Physiol. 176, 208–218 (2018).

    CAS 

    Google Scholar
     

  • 44.

    Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    CAS 

    Google Scholar
     

  • 45.

    Tiwari, M., Sharma, D. & Trivedi, P. Okay. Synthetic microRNA mediated gene silencing in crops: progress and views. Plant Mol. Biol. 86, 1–18 (2014).

    CAS 

    Google Scholar
     

  • 46.

    Bennett, M., Deikman, J., Hendrix, B. & Iandolino, A. Limitations to environment friendly foliar uptake of dsRNA and molecular obstacles to dsRNA exercise in plant cells. Entrance. Plant Sci. https://doi.org/10.3389/fpls.2020.00816 (2020).

  • 47.

    Pinals, R. L., Yang, D., Lui, A., Cao, W. & Landry, M. P. Corona alternate dynamics on carbon nanotubes by multiplexed fluorescence monitoring. J. Am. Chem. Soc. 142, 1254–1264 (2020).

    CAS 

    Google Scholar
     

  • 48.

    Geilfus, C.-M. The pH of the apoplast: dynamic issue with purposeful impression beneath stress. Mol. Plant 10, 1371–1386 (2017).

    CAS 

    Google Scholar
     

  • 49.

    Chehab, E. W., Eich, E. & Braam, J. Thigmomorphogenesis: a fancy plant response to mechano-stimulation. J. Exp. Bot. 60, 43–56 (2009).

    CAS 

    Google Scholar
     

  • 50.

    Mori, I. C. & Schroeder, J. I. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar progress, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 135, 702–708 (2004).

    CAS 

    Google Scholar
     

  • 51.

    Baldock, B. L. & Hutchison, J. E. UV–seen spectroscopy-based quantification of unlabeled DNA sure to gold nanoparticles. Anal. Chem. 88, 12072–12080 (2016).

    CAS 

    Google Scholar
     

  • 52.

    Marcus, M. A. et al. Beamline 10.3.2 at ALS: a tough X-ray microprobe for environmental and supplies sciences. J. Synchrotron Radiat. 11, 239–247 (2004).

    CAS 

    Google Scholar
     

  • 53.

    Mitov, M. I., Greaser, M. L. & Campbell, Okay. S. GelBandFitter – a pc program for evaluation of carefully spaced electrophoretic and immunoblotted bands. Electrophoresis 30, 848–851 (2009).

    CAS 

    Google Scholar
     

  • 54.

    Toni, L. S. et al. Optimization of phenol-chloroform RNA extraction. MethodsX 5, 599–608 (2018).


    Google Scholar
     

  • 55.

    O’Leary, B. M., Rico, A., McCraw, S., Fones, H. N. & Preston, G. M. The infiltration-centrifugation method for extraction of apoplastic fluid from plant leaves utilizing Phaseolus vulgaris for instance. J. Vis. Exp. https://doi.org/10.3791/52113 (2014).

  • 56.

    Nicot, N., Hausman, J.-F., Hoffmann, L. & Evers, D. Housekeeping gene choice for real-time RT-PCR normalization in potato throughout biotic and abiotic stress. J. Exp. Bot. 56, 2907–2914 (2005).

    CAS 

    Google Scholar
     

  • 57.

    Selvakesavan, R. Okay. & Franklin, G. Nanoparticles have an effect on the expression stability of housekeeping genes in plant cells. Nanotechnol., Sci. Appl. 13, 77–88 (2020).

    CAS 

    Google Scholar
     

  • 58.

    Schmittgen, T. D. & Livak, Okay. J. Analyzing real-time PCR knowledge by the comparative CT technique. Nat. Protoc. 3, 1101–1108 (2008).

    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *