Nanoparticle mobile internalization will not be required for RNA supply to mature plant leaves
Liu, Y. et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and sturdy insect resistance in rice. Nat. Biotechnol. 33, 301–305 (2015).
Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. Excessive-efficiency TALEN-based gene modifying produces disease-resistant rice. Nat. Biotechnol. 30, 390–392 (2012).
Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J. & Schroeder, A. Therapeutic nanoparticles penetrate leaves and ship vitamins to agricultural crops. Sci. Rep. 8, 7589 (2018).
Torney, F., Trewyn, B. G., Lin, V. S. Y. & Wang, Okay. Mesoporous silica nanoparticles ship DNA and chemical compounds into crops. Nat. Nanotechnol. 2, 295–300 (2007).
Demirer, G. S. et al. Excessive side ratio nanomaterials allow supply of purposeful genetic materials with out DNA integration in mature crops. Nat. Nanotechnol. 14, 456–464 (2019).
Kwak, S.-Y. et al. Chloroplast-selective gene supply and expression in planta utilizing chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).
Mitter, N. et al. Clay nanosheets for topical supply of RNAi for sustained safety in opposition to plant viruses. Nat. Vegetation 3, 16207 (2017).
Demirer, G. S. et al. Carbon nanocarriers ship siRNA to intact plant cells for environment friendly gene knockdown. Sci. Adv. 6, eaaz0495 (2020).
Zhang, H. et al. DNA nanostructures coordinate gene silencing in mature crops. Proc. Natl Acad. Sci. USA 116, 7543 (2019).
Lei, W.-X. et al. Development of gold-siRNANPR1 nanoparticles for efficient and fast silencing of NPR1 in Arabidopsis thaliana. RSC Adv. 10, 19300–19308 (2020).
Zhang, H. et al. Gold-nanocluster-mediated supply of siRNA to intact plant cells for environment friendly gene knockdown. Nano Lett. https://doi.org/10.1021/acs.nanolett.1c01792 (2021).
Martin-Ortigosa, S. et al. Mesoporous silica nanoparticle-mediated intracellular Cre protein supply for maize genome modifying by way of loxP web site excision. Plant Physiol. 164, 537–547 (2014).
Liu, Q. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009).
Bao, W., Wang, J., Wang, Q., O’Hare, D. & Wan, Y. Layered double hydroxide nanotransporter for molecule supply to intact plant cells. Sci. Rep. 6, 26738 (2016).
Avellan, A. et al. Nanoparticle dimension and coating chemistry management foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).
Spielman-Solar, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).
Zhang, S., Gao, H. & Bao, G. Bodily ideas of nanoparticle mobile endocytosis. ACS Nano 9, 8655–8671 (2015).
Herd, H. et al. Nanoparticle geometry and floor orientation affect mode of mobile uptake. ACS Nano 7, 1961–1973 (2013).
Xie, X., Liao, J., Shao, X., Li, Q. & Lin, Y. The impact of form on mobile uptake of gold nanoparticles within the types of stars, rods, and triangles. Sci. Rep. 7, 3827 (2017).
Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Figuring out the dimensions and form dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).
Yi, X., Shi, X. & Gao, H. A common legislation for cell uptake of one-dimensional nanomaterials. Nano Lett. 14, 1049–1055 (2014).
Huang, C., Zhang, Y., Yuan, H., Gao, H. & Zhang, S. Function of nanoparticle geometry in endocytosis: laying down to face up. Nano Lett. 13, 4546–4550 (2013).
Shi, X., von dem Bussche, A., Damage, R. H., Kane, A. B. & Gao, H. Cell entry of one-dimensional nanomaterials happens by tip recognition and rotation. Nat. Nanotechnol. 6, 714–719 (2011).
Vácha, R., Martinez-Veracoechea, F. J. & Frenkel, D. Receptor-mediated endocytosis of nanoparticles of varied shapes. Nano Lett. 11, 5391–5395 (2011).
Hui, Y. et al. Function of nanoparticle mechanical properties in most cancers drug supply. ACS Nano 13, 7410–7424 (2019).
Houston, Okay., Tucker, M. R., Chowdhury, J., Shirley, N. & Little, A. The plant cell wall: a fancy and dynamic construction as revealed by the responses of genes beneath stress circumstances. Entrance Plant Sci. 7, 984 (2016).
Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated supply in the direction of advancing plant genetic engineering. Traits Biotechnol. https://doi.org/10.1016/j.tibtech.2018.03.009 (2018).
Schwab, F. et al. Limitations, pathways and processes for uptake, translocation and accumulation of nanomaterials in crops – essential overview. Nanotoxicology 10, 257–278 (2016).
Wang, P., Lombi, E., Zhao, F.-J. & Kopittke, P. M. Nanotechnology: a brand new alternative in plant sciences. Traits Plant Sci. 21, 699–712 (2016).
Hubbard, J. D., Lui, A. & Landry, M. P. Multiscale and multidisciplinary method to understanding nanoparticle transport in crops. Curr. Opin. Chem. Eng. 30, 135–143 (2020).
Corredor, E. et al. Nanoparticle penetration and transport in dwelling pumpkin crops: in situ subcellular identification. BMC Plant Biol. 9, 45 (2009).
Bao, D. P., Oh, Z. G. & Chen, Z. Characterization of silver nanoparticles internalized by Arabidopsis crops utilizing single particle ICP-MS evaluation. Entrance. Plant Sci. https://doi.org/10.3389/fpls.2016.00032 (2016).
Zhang, P. et al. Form-dependent transformation and translocation of ceria nanoparticles in cucumber crops. Environ. Sci. Technol. Lett. 4, 380–385 (2017).
Giraldo, J. P. et al. Plant nanobionics method to reinforce photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).
Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Focused supply of nanomaterials with chemical cargoes in crops enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).
Zhang, X., Servos, M. R. & Liu, J. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA utilizing a pH-assisted and surfactant-free route. J. Am. Chem. Soc. 134, 7266–7269 (2012).
Yang, G. et al. Implications of quenching-to-dequenching change in quantitative cell uptake and biodistribution of dye-labeled nanoparticles. Angew. Chem. Int. Ed. 60, 15426–15435 (2021).
Sattelmacher, B. The apoplast and its significance for plant mineral diet. New Phytol. 149, 167–192 (2001).
Yu, M. et al. Rotation-facilitated speedy transport of nanorods in mucosal tissues. Nano Lett. 16, 7176–7182 (2016).
Matsuoka, Okay., Bassham, D. C., Raikhel, N. V. & Nakamura, Okay. Totally different sensitivity to wortmannin of two vacuolar sorting indicators signifies the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130, 1307–1318 (1995).
Elkin, S. R. et al. Ikarugamycin: a pure product inhibitor of clathrin-mediated endocytosis. Visitors 17, 1139–1149 (2016).
Aniento, F. & Robinson, D. G. Testing for endocytosis in crops. Protoplasma 226, 3–11 (2005).
Reynolds, G. D., Wang, C., Pan, J. & Bednarek, S. Y. Inroads into internalization: 5 years of endocytic exploration. Plant Physiol. 176, 208–218 (2018).
Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).
Tiwari, M., Sharma, D. & Trivedi, P. Okay. Synthetic microRNA mediated gene silencing in crops: progress and views. Plant Mol. Biol. 86, 1–18 (2014).
Bennett, M., Deikman, J., Hendrix, B. & Iandolino, A. Limitations to environment friendly foliar uptake of dsRNA and molecular obstacles to dsRNA exercise in plant cells. Entrance. Plant Sci. https://doi.org/10.3389/fpls.2020.00816 (2020).
Pinals, R. L., Yang, D., Lui, A., Cao, W. & Landry, M. P. Corona alternate dynamics on carbon nanotubes by multiplexed fluorescence monitoring. J. Am. Chem. Soc. 142, 1254–1264 (2020).
Geilfus, C.-M. The pH of the apoplast: dynamic issue with purposeful impression beneath stress. Mol. Plant 10, 1371–1386 (2017).
Chehab, E. W., Eich, E. & Braam, J. Thigmomorphogenesis: a fancy plant response to mechano-stimulation. J. Exp. Bot. 60, 43–56 (2009).
Mori, I. C. & Schroeder, J. I. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar progress, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 135, 702–708 (2004).
Baldock, B. L. & Hutchison, J. E. UV–seen spectroscopy-based quantification of unlabeled DNA sure to gold nanoparticles. Anal. Chem. 88, 12072–12080 (2016).
Marcus, M. A. et al. Beamline 10.3.2 at ALS: a tough X-ray microprobe for environmental and supplies sciences. J. Synchrotron Radiat. 11, 239–247 (2004).
Mitov, M. I., Greaser, M. L. & Campbell, Okay. S. GelBandFitter – a pc program for evaluation of carefully spaced electrophoretic and immunoblotted bands. Electrophoresis 30, 848–851 (2009).
Toni, L. S. et al. Optimization of phenol-chloroform RNA extraction. MethodsX 5, 599–608 (2018).
O’Leary, B. M., Rico, A., McCraw, S., Fones, H. N. & Preston, G. M. The infiltration-centrifugation method for extraction of apoplastic fluid from plant leaves utilizing Phaseolus vulgaris for instance. J. Vis. Exp. https://doi.org/10.3791/52113 (2014).
Nicot, N., Hausman, J.-F., Hoffmann, L. & Evers, D. Housekeeping gene choice for real-time RT-PCR normalization in potato throughout biotic and abiotic stress. J. Exp. Bot. 56, 2907–2914 (2005).
Selvakesavan, R. Okay. & Franklin, G. Nanoparticles have an effect on the expression stability of housekeeping genes in plant cells. Nanotechnol., Sci. Appl. 13, 77–88 (2020).
Schmittgen, T. D. & Livak, Okay. J. Analyzing real-time PCR knowledge by the comparative CT technique. Nat. Protoc. 3, 1101–1108 (2008).