Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration | Journal of Nanobiotechnology
14 mins read

Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration | Journal of Nanobiotechnology

Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration | Journal of Nanobiotechnology


  • 1.

    Walker P, Erkman M. The position of the menisci in drive transmission throughout the knee. Clin Orthopaedics Relat Res. 1975:184–92.

  • 2.

    Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: construction–operate, pathophysiology, present restore methods, and prospects for regeneration. Biomaterials. 2011;32:7411–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Miller MD. Orthopaedic data replace: Sports activities drugs 5: American Orthopaedic Society for Sports activities Medication; 2018.

  • 4.

    Renström P, Johnson RJ. Anatomy and biomechanics of the menisci. Clin Sports activities Med. 1990;9:523–38.

    PubMed 

    Google Scholar
     

  • 5.

    Englund M, Lohmander L. Danger elements for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 2004;50:2811–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Papalia R, Del Buono A, Osti L, Denaro V, Maffulli N. Meniscectomy as a threat issue for knee osteoarthritis: a scientific overview. Br Med Bull. 2011;99:89–106.

    PubMed 

    Google Scholar
     

  • 7.

    Lee B, Chung J, Kim J, Cho W, Kim Okay, Bin S. Morphologic modifications in fresh-frozen meniscus allografts over 1 12 months: a potential magnetic resonance imaging research on the width and thickness of transplants. Am J Sports activities Med. 2012;40:1384–91.

    PubMed 

    Google Scholar
     

  • 8.

    Elattar M, Dhollander A, Verdonk R, Almqvist Okay, Verdonk P. Twenty-six years of meniscal allograft transplantation: is it nonetheless experimental? A meta-analysis of 44 trials. Knee Surg Sports activities Traumatol Arthrosc. 2011;19:147–57.

    PubMed 

    Google Scholar
     

  • 9.

    Myers P, Tudor F. Meniscal allograft transplantation: how ought to we be doing it? A scientific overview. Arthroscopy. 2015;31:911–25.

    PubMed 

    Google Scholar
     

  • 10.

    Rath E, Richmond J, Yassir W, Albright J, Gundogan F. Meniscal allograft transplantation. Two- to eight-year outcomes. Am J Sports activities Med. 2001;29:410–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Dienst M, Greis P, Ellis B, Bachus Okay, Burks R. Impact of lateral meniscal allograft sizing on contact mechanics of the lateral tibial plateau: an experimental research in human cadaveric knee joints. Am J Sports activities Med. 2007;35:34–42.

    PubMed 

    Google Scholar
     

  • 12.

    Hommen J, Applegate G, Del Pizzo W. Meniscus allograft transplantation: ten-year outcomes of cryopreserved allografts. Arthroscopy. 2007;23:388–93.

    PubMed 

    Google Scholar
     

  • 13.

    Veronesi F, Di Matteo B, Vitale ND, Filardo G, Visani A, Kon E, et al. Biosynthetic scaffolds for partial meniscal loss: a scientific overview from animal fashions to medical follow. Bioact Mater. 2021;6:3782–800.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Houck D, Kraeutler M, Belk J, McCarty E, Bravman J. Related medical outcomes following collagen or polyurethane meniscal scaffold implantation: a scientific overview. Knee Surg Sports activities Traumatol Arthrosc. 2018;26:2259–69.

    PubMed 

    Google Scholar
     

  • 15.

    Zaffagnini S, Grassi A, Muccioli G, Holsten D, Bulgheroni P, Monllau JC, et al. Two-year medical outcomes of lateral collagen meniscus implant: a multicenter research. Arthroscopy. 2015;31:1269–78.

    PubMed 

    Google Scholar
     

  • 16.

    Toanen C, Dhollander A, Bulgheroni P, Filardo G, Zaffagnini S, Spalding T, et al. Polyurethane meniscal scaffold for the remedy of partial meniscal deficiency: 5-year follow-up outcomes: a eu multicentric research. Am J Sports activities Med. 2020;48:1347–55.

    PubMed 

    Google Scholar
     

  • 17.

    Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G, et al. Platelet autologous progress elements lower the osteochondral regeneration functionality of a collagen-hydroxyapatite scaffold in a sheep mannequin. BMC Musculoskelet Disord. 2010;11:220.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Shimomura Okay, Moriguchi Y, Murawski C, Yoshikawa H, Nakamura N. Osteochondral tissue engineering with biphasic scaffold: present methods and methods. Tissue Eng Half B Rev. 2014;20:468–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Unterman S, Gibson M, Lee J, Crist J, Chansakul T, Yang E, et al. Hyaluronic acid-binding scaffold for articular cartilage restore. Tissue Eng Half A. 2012;18:2497–506.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects restore. Orthopedics. 2013;36:868–73.

    PubMed 

    Google Scholar
     

  • 21.

    Castro N, Patel R, Zhang L. Design of a novel 3D printed bioactive nanocomposite scaffold for improved osteochondral regeneration. Cell Mol Bioeng. 2015;8:416–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Marycz Okay, Smieszek A, Targonska S, Walsh S, Szustakiewicz Okay, Wiglusz R. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu) composite for osteochondral defect regeneration and theranostics. Mater Sci Eng C. 2020;110:110634.

    CAS 

    Google Scholar
     

  • 23.

    McGivern S, Boutouil H, Al-Kharusi G, Little S, Dunne NJ, Levingstone TJ. Translational utility of 3D bioprinting for cartilage tissue engineering. Bioengineering. 2021;8:144.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Akhavan O, Ghaderi E, Shahsavar M. Graphene nanogrids for selective and quick osteogenic differentiation of human mesenchymal stem cells. Carbon. 2013;59:200–11.

    CAS 

    Google Scholar
     

  • 25.

    Lee C-F, Hsu Y-H, Lin Y-C, Nguyen T-T, Chen H-W, Nabilla SC, et al. 3D printing of collagen/oligomeric proanthocyanidin/oxidized hyaluronic acid composite scaffolds for articular cartilage restore. Polymers (Basel). 2021;13:3123.

    CAS 

    Google Scholar
     

  • 26.

    Zhang Q, Lu H, Kawazoe N, Chen G. Pore measurement impact of collagen scaffolds on cartilage regeneration. Acta Biomater. 2014;10:2005–13.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Huang J, Xiong J, Wang D, Zhang J, Yang L, Solar S, et al. 3D bioprinting of hydrogels for cartilage tissue engineering. Gels. 2021;7:144.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Lee WC, Lim CH, Kenry SuC, Loh KP, Lim CT. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small. 2015;11:963–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Zhou X, Nowicki M, Cui H, Zhu W, Fang X, Miao S, et al. 3D bioprinted graphene oxide-incorporated matrix for selling chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon. 2017;116:615–24.

    CAS 

    Google Scholar
     

  • 30.

    Ma Z, Gao C, Gong Y, Shen J. Cartilage tissue engineering PLLA scaffold with floor immobilized collagen and fundamental fibroblast progress issue. Biomaterials. 2005;26:1253–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Wasyłeczko M, Sikorska W, Chwojnowski A. Evaluate of artificial and hybrid scaffolds in cartilage tissue engineering. Membranes (Basel). 2020;10:348.


    Google Scholar
     

  • 32.

    Zeng Y, Li X, Liu X, Yang Y, Zhou Z, Fan J, et al. PLLA porous microsphere-reinforced silk-based scaffolds for auricular cartilage regeneration. ACS Omega. 2021;6:3372–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74:782–8.

    PubMed 

    Google Scholar
     

  • 34.

    Deng C, Chang J, Wu C. Bioactive scaffolds for osteochondral regeneration. J Orthopaedic Trans. 2019;17:15–25.


    Google Scholar
     

  • 35.

    Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell-ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Somaiah C, Kumar A, Mawrie D, Sharma A, Patil S, Bhattacharyya J, et al. Collagen promotes increased adhesion, survival and proliferation of mesenchymal stem cells. PLoS ONE. 2015;10:e0145068.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Lu H, Cooper J, Manuel S, Freeman J, Attawia M, Ko F, et al. Anterior cruciate ligament regeneration utilizing braided biodegradable scaffolds: in vitro optimization research. Biomaterials. 2005;26:4805–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Yu X, Mengsteab PY, Narayanan G, Nair LS, Laurencin CT. Enhancing the floor properties of a bioengineered anterior cruciate ligament matrix to be used with point-of-care stem cell remedy. Engineering. 2021;7:153–61.

    PubMed 

    Google Scholar
     

  • 39.

    Das P, DiVito MD, Wertheim JA, Tan LP. Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro upkeep of practical hepatocytes. Mater Sci Eng C Mater Biol Appl. 2020;111:110723.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC. Floor modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen kind I grafting for pores and skin tissue engineering. Mater Sci Eng, C. 2014;34:402–9.

    CAS 

    Google Scholar
     

  • 41.

    Zhou S, Chen S, Jiang Q, Pei M. Determinants of stem cell lineage differentiation towards chondrogenesis versus adipogenesis. Cell Mol Life Sci. 2019;76:1653–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Henrionnet C, Liang G, Roeder E, Dossot M, Wang H, Magdalou J, et al. Hypoxia for mesenchymal stem cell growth and differentiation: one of the best ways for enhancing TGFß-induced chondrogenesis and stopping calcifications in alginate beads. Tissue Eng Half A. 2017;23:913–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Smart J, Yarin A, Megaridis C, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Half A. 2009;15:913–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Vrancken A, Madej W, Hannink G, Verdonschot N, Van T, Buma P, et al. Brief time period analysis of an anatomically formed polycarbonate urethane complete meniscus alternative in a goat mannequin. PLoS ONE. 2015;10:e0133138.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, et al. Human umbilical cord-derived mesenchymal stem cells don’t endure malignant transformation throughout long-term culturing in serum-free medium. PLoS ONE. 2014;9:e98565.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Chia HN, Hull ML. Compressive moduli of the human medial meniscus within the axial and radial instructions at equilibrium and at a physiological pressure price. J Orthop Res. 2008;26:951–6.

    PubMed 

    Google Scholar
     

  • 47.

    Gibson LJ, Ashby MF. Mobile solids: construction & properties. Adv Polym Technol. 1989;9:165–6.


    Google Scholar
     

  • 48.

    Lien S-M, Ko L-Y, Huang T-J. Impact of pore measurement on ECM secretion and cell progress in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5:670–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Li S, Tallia F, Mohammed AA, Stevens MM, Jones JR. Scaffold channel measurement influences stem cell differentiation pathway in 3-D printed silica hybrid scaffolds for cartilage regeneration. Biomater Sci. 2020;8:4458–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Reghunadhan A, Thomas S. Chapter 1—polyurethanes: construction, properties, synthesis, characterization, and functions. In: Thomas S, Datta J, Haponiuk JT, Reghunadhan A, editors. Polyurethane polymers. Amsterdam: Elsevier; 2017. p. 1–16.


    Google Scholar
     

  • 51.

    Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO. Characterization of polyurethane resins by FTIR, TGA, and XRD. J Appl Polym Sci. 2010;115:263–8.

    CAS 

    Google Scholar
     

  • 52.

    DeLise AM, Fischer L, Tuan RS. Mobile interactions and signaling in cartilage growth. Osteoarthritis Cartilage. 2000;8:309–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Liu Z, Wang J, Chen H, Zhang G, Lv Z, Li Y, et al. Coaxial electrospun PLLA fibers modified with water-soluble supplies for oligodendrocyte myelination. Polymers (Basel). 2021;13:3595.

    CAS 

    Google Scholar
     

  • 54.

    Rahighi R, Panahi M, Akhavan O, Mansoorianfar M. Strain-engineered electrophoretic deposition for gentamicin loading inside osteoblast-specific cellulose nanofiber scaffolds. Mater Chem Phys. 2021;272:125018.

    CAS 

    Google Scholar
     

  • 55.

    Keselowsky BG, Collard DM, García AJ. Floor chemistry modulates fibronectin conformation and directs integrin binding and specificity to manage cell adhesion. J Biomed Mater Res, Half A. 2003;66:247–59.


    Google Scholar
     

  • 56.

    Kaur J, Reinhardt DP. Chapter 3—extracellular matrix (ECM) molecules. In: Vishwakarma A, Sharpe P, Shi S, Ramalingam M, editors. Stem cell biology and tissue engineering in dental sciences. Boston: Tutorial Press; 2015. p. 25–45.


    Google Scholar
     

  • 57.

    Bhati R, Mukherjee D, McCarthy Okay, Rogers S, Smith D, Shalaby S. The expansion of chondrocytes right into a fibronectin-coated biodegradable scaffold. J Biomed Mater Res. 2001;56:74–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Lee H, Choi B, Min B, Park S. Modifications in floor markers of human mesenchymal stem cells through the chondrogenic differentiation and dedifferentiation processes in vitro. Arthritis Rheum. 2009;60:2325–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Ma N, Teng X, Zheng Q, Chen P. The regulatory mechanism of p38/MAPK within the chondrogenic differentiation from bone marrow mesenchymal stem cells. J Orthop Surg Res. 2019;14:434.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Yoon HH, Bhang SH, Kim T, Yu T, Hyeon T, Kim B-S. Twin roles of graphene oxide in chondrogenic differentiation of grownup stem cells: cell-adhesion substrate and progress factor-delivery provider. Adv Func Mater. 2014;24:6455–64.

    CAS 

    Google Scholar
     

  • 61.

    Li J, Zhao Z, Liu J, Huang N, Lengthy D, Wang J, et al. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells by way of delicate interplay with TGF-beta1/Smads pathway. Cell Prolif. 2010;43:333–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B. Sox9 is required for willpower of the chondrogenic cell lineage within the cranial neural crest. Proc Natl Acad Sci. 2003;100:9360–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Hino Okay, Saito A, Kido M, Kanemoto S, Asada R, Takai T, et al. Grasp regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem. 2014;289:13810–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Quintana L, Zur Nieden N, Semino C. Morphogenetic and regulatory mechanisms throughout developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Half B Rev. 2009;15:29–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Hosseini SM, Vasaghi A, Nakhlparvar N, Roshanravan R, Talaei-Khozani T, Razi Z. Differentiation of Wharton’s jelly mesenchymal stem cells into neurons in alginate scaffold. Neural Regen Res. 2015;10:1312–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Neal RA, Lenz SM, Wang T, Abebayehu D, Brooks BPC, Ogle RC, et al. Laminin- and basement membrane-polycaprolactone mix nanofibers as a scaffold for regenerative drugs. Nanomater Environ. 2014;2:1–12.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Yan F, Yue W, Zhang Y-L, Mao G-C, Gao Okay, Zuo Z-X, et al. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke. Neural Regen Res. 2015;10:1421–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Zhou L, Tu J, Fang G, Deng L, Gao X, Guo Okay, et al. Combining PLGA scaffold and MSCs for mind tissue engineering: a possible instrument for remedy of mind damage. Stem Cells Int. 2018;2018:5024175.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Yang E-Z, Zhang G-W, Xu J-G, Chen S, Wang H, Cao L-L, et al. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and practical restoration after rat spinal wire damage. Acta Pharmacol Sin. 2017;38:623–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, et al. Fluorinated graphene for selling neuro-induction of stem cells. Adv Mater. 2012;24:4285–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Akhavan O, Ghaderi E, Shirazian SA, Rahighi R. Rolled graphene oxide foams as three-dimensional scaffolds for progress of neural fibers utilizing electrical stimulation of stem cells. Carbon. 2016;97:71–7.

    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *