Tetrahedral DNA nanostructures for efficient remedy of most cancers: advances and prospects | Journal of Nanobiotechnology

Tetrahedral DNA nanostructures for efficient remedy of most cancers: advances and prospects | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Utility of liposomes in drugs and drug supply. Artif Cell Nanomed B. 2016;44:381–91.

    CAS 

    Google Scholar
     

  • 2.

    Jiang L, Li L, He XD, Yi QY, He B, Cao J, Pan WS, Gu ZW. Overcoming drug-resistant lung most cancers by paclitaxel loaded dual-functional liposomes with mitochondria concentrating on and pH-response. Biomaterials. 2015;52:126–39.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Aziz ZABA, Ahmad A, Mohd-Setapar SH, Hassan H, Lokhat D, Kamal MA, Ashraf GM. Latest advances in drug supply of polymeric nano-micelles. Curr Drug Metab. 2017;18:16–29.

    PubMed 

    Google Scholar
     

  • 4.

    Varde NK, Pack DW. Microspheres for managed launch drug supply. Professional Opin Biol Ther. 2004;4:35–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Kaneshiro TL, Lu ZR. Focused intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular provider. Biomaterials. 2009;30:5660–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Ma D, Lin QM, Zhang LM, Liang YY, Xue W. A star-shaped porphyrin-arginine functionalized poly(l-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials. 2014;35:4357–67.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Hutter E, Fendler JH. Exploitation of localized floor plasmon resonance. Adv Mater. 2004;16:1685–706.

    CAS 

    Google Scholar
     

  • 8.

    Xia XH, Yang MX, Oetjen LK, Zhang Y, Li QG, Chen JY, Xia YN. An enzyme-sensitive probe for photoacoustic imaging and fluorescence detection of protease exercise. Nanoscale. 2011;3:950–3.

    PubMed 

    Google Scholar
     

  • 9.

    Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and purposes of nanodiamonds. Nat Nanotechnol. 2012;7:11–23.

    CAS 

    Google Scholar
     

  • 10.

    Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–44.

    CAS 

    Google Scholar
     

  • 11.

    Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as managed launch drug supply and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278–88.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Cao C, Yang N, Zhao Y, Yang D, Hu Y, Yang D, Tune X, Wang W, Dong X. Biodegradable hydrogel with thermo-response and hemostatic impact for photothermal enhanced anti-infective remedy. Nano Immediately. 2021;39: 101165.

    CAS 

    Google Scholar
     

  • 13.

    Yang D, Tu Y, Wang X, Cao C, Hu Y, Shao J, Weng L, Mou X, Dong X. A photograph-triggered antifungal nanoplatform with efflux pump and warmth shock protein reversal exercise for enhanced chemo-photothermal synergistic remedy. Biomater Sci. 2021;9:3293–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ. Speedy chiral meeting of inflexible DNA constructing blocks for molecular nanofabrication. Science. 2005;310:1661–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan CH. Self-assembled multivalent DNA nanostructures for noninvasive intracellular supply of immunostimulatory CpG oligonucleotides. ACS Nano. 2011;5:8783–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Bergamini C, Angelini P, Rhoden KJ, Porcelli AM, Fato R, Zuccheri G. A sensible method for the detection of DNA nanostructures in single stay human cells by fluorescence microscopy. Strategies. 2014;67:185–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Charoenphol P, Bermudez H. Design and software of multifunctional DNA nanocarriers for therapeutic supply. Acta Biomater. 2014;10:1683–91.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Goodman RP, Berry RM, Turberfield AJ. The one-step synthesis of a DNA tetrahedron. Chem Commun. 2004. https://doi.org/10.1039/B402293A.

    Article 

    Google Scholar
     

  • 19.

    Ma WJ, Zhan YX, Zhang YX, Xie XP, Mao CC, Lin YF. Enhanced neural regeneration with a concomitant remedy of framework nucleic acid and stem cells in spinal twine harm. ACS Appl Mater Interfaces. 2020;12:2095–106.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Carter MLJ, Rusling DA, Gurr S, Brown T, Fox KR. Stability of the completely different arms of a DNA tetrahedron and its interplay with a minor groove ligand. Biophys Chem. 2020;256: 106270.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Li SH, Solar Y, Tian TR, Qin X, Lin SY, Zhang T, Zhang Q, Zhou M, Zhang XL, Zhou Y, Zhao H, Zhu BF, Cai XX. MicroRNA-214-3p modified tetrahedral framework nucleic acids goal survivin to induce tumour cell apoptosis. Cell Prolif. 2020;53:12708–21.


    Google Scholar
     

  • 22.

    Shi SR, Yang C, Tian TR, Li SH, Lin SY, Zhang YX, Shao XR, Tao Z, Lin YF, Cai XX. Results of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 2020;8:87–99.


    Google Scholar
     

  • 23.

    Kim KR, Kim DR, Lee T, Yhee JY, Kim BS, Kwon IC, Ahn DR. Drug supply by a self-assembled DNA tetrahedron for overcoming drug resistance in breast most cancers cells. Chem Commun. 2013;49:2010–2.

    CAS 

    Google Scholar
     

  • 24.

    Ozhalici-Unal H, Armitage BA. Fluorescent DNA nanotags based mostly on a self-assembled DNA tetrahedron. ACS Nano. 2009;3:425–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Ding YS, Liu XT, Zhu J, Wang L, Jiang W. Quantitative single-molecule detection of protein based mostly on DNA tetrahedron fluorescent nanolabels. Talanta. 2014;125:393–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Charoenphol P, Bermudez H. Aptamer-targeted DNA nanostructures for therapeutic supply. Mol Pharm. 2014;11:1721–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Erben CM, Goodman RP, Turberfield AJ. Single-molecule protein encapsulation in a inflexible DNA cage. Angew Chem Int Ed. 2006;45:7414–7.

    CAS 

    Google Scholar
     

  • 28.

    Lee H, Lytton-Jean AKR, Chen Y, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M, Peng CG, Charisse Ok, Borodovsky A, Manoharan M, Donahoe JS, Truelove J, Nahrendorf M, Langer R, Anderson DG. Molecularly self-assembled nucleic acid nanoparticles for focused in vivo siRNA supply. Nat Nanotechnol. 2012;7:389–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Kim KR, Kim HY, Lee YD, Ha JS, Kang JH, Jeong H, Bang D, Ko YT, Kim S, Lee H, Ahn DR. Self-assembled mirror DNA nanostructures for tumor-specific supply of anticancer medicine. J Management Launch. 2016;243:121–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Thai HBD, Kim KR, Hong KT, Voitsitskyi T, Lee JS, Mao C, Ahn DR. Kidney-targeted cytosolic supply of siRNA utilizing a small-sized mirror DNA tetrahedron for enhanced efficiency. ACS Cent Sci. 2020;6:2250–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Xie X, Shao X, Ma W, Zhao D, Shi S, Li Q, Lin Y. Overcoming drug-resistant lung most cancers by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale. 2018;10:5457–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Wu TT, Liu JB, Liu MM, Liu SL, Zhao S, Tian R, Wei DS, Liu YZ, Zhao Y, Xiao HH, Ding BQ. A nanobody-conjugated DNA nanoplatform for focused platinum-drug supply. Angew Chem Int Ed. 2019;58:14224–8.

    CAS 

    Google Scholar
     

  • 33.

    Zhang J, Guo Y, Ding F, Pan G, Zhu X, Zhang C. A camptothecin-grafted DNA tetrahedron as a exact nanomedicine to inhibit tumor progress. Angew Chem Int Ed. 2019;58:13794–8.

    CAS 

    Google Scholar
     

  • 34.

    Zhan Y, Ma W, Zhang Y, Mao C, Shao X, Xie X, Wang F, Liu X, Li Q, Lin Y. DNA-based nanomedicine with concentrating on and enhancement of therapeutic efficacy of breast most cancers cells. ACS Appl Mater Interfaces. 2019;11:15354–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X. DNA trojan horses: self-assembled floxuridine-containing DNA polyhedra for most cancers remedy. Angew Chem Int Ed. 2017;56:12528–32.

    CAS 

    Google Scholar
     

  • 36.

    Kim KR, Bang D, Ahn DR. Nano-formulation of a photosensitizer utilizing a DNA tetrahedron and its potential for in vivo photodynamic remedy. Biomater Sci. 2016;4:605–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Liu ZC, Pei H, Zhang LM, Tian Y. Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca2+ and pH in neurons. ACS Nano. 2018;12:12357–68.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie JP, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6:21822–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Setyawati MI, Kutty RV, Leong DT. DNA nanostructures carrying stoichiometrically definable antibodies. Small. 2016;12:5601–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Liu XW, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y. A DNA nanostructure platform for directed meeting of artificial vaccines. Nano Lett. 2012;12:4254–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Wong NY, Zhang C, Tan LH, Lu Y. Web site-specific attachment of proteins onto a 3D DNA tetrahedron by backbone-modified phosphorothioate DNA. Small. 2011;7:1427–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Yan JQ, Chen J, Zhang N, Yang YD, Zhu WW, Li L, He B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin supply and enhancement of apoptosis. J Mater Chem B. 2020;8:492–503.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Tian T, Li J, Xie C, Solar Y, Lei H, Liu X, Xia J, Shi J, Wang L, Lu W, Fan C. Focused imaging of mind tumors with a framework nucleic acid probe. ACS Appl Mater Interfaces. 2018;10:3414–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Xia ZW, Wang P, Liu XW, Liu T, Yan YN, Yan J, Zhong J, Solar G, He DN. Tumor-penetrating peptide-modified DNA tetrahedron for concentrating on drug supply. Biochemistry. 2016;55:1326–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Wu T, Liu Q, Cao Y, Tian R, Liu J, Ding B. Multifunctional double-bundle DNA tetrahedron for environment friendly regulation of gene expression. ACS Appl Mater Interfaces. 2020;12:32461–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, Fan C. Single-particle monitoring and modulation of cell entry pathways of a tetrahedral DNA nanostructure in stay cells. Angew Chem Int Ed. 2014;53:7745–50.

    CAS 

    Google Scholar
     

  • 47.

    Yan J, Zhang Z, Zhan X, Chen Ok, Pu Y, Liang Y, He B. In situ injection of dual-delivery PEG based mostly MMP-2 delicate hydrogels for enhanced tumor penetration and chemo-immune mixture remedy. Nanoscale. 2021;13:9577–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Yang J, Jiang Q, He L, Zhan P, Liu Q, Liu S, Fu M, Liu J, Li C, Ding B. Self-assembled double-bundle DNA tetrahedron for environment friendly antisense supply. ACS Appl Mater Interfaces. 2018;10:23693–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Tian TR, Xiao DX, Zhang T, Li YJ, Shi SR, Zhong WY, Gong P, Liu Z, Li Q, Lin YF. A framework nucleic acid based mostly robotic nanobee for energetic concentrating on remedy. Adv Funct Mater. 2021;31:2007342–51.

    CAS 

    Google Scholar
     

  • 50.

    Li Q, Zhao D, Shao X, Lin S, Xie X, Liu M, Ma W, Shi S, Lin Y. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug supply. ACS Appl Mater Interfaces. 2017;9:36695–701.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Kim Ok-R, Lee T, Kim B-S, Ahn D-R. Using the bioorthogonal base-pairing system of l-DNA to design excellent DNA nanocarriers for enhanced supply of nucleic acid cargos. Chem Sci. 2014;5(1533):1537.


    Google Scholar
     

  • 52.

    Liu M, Ma W, Li Q, Zhao D, Shao X, Huang Q, Hao L, Lin Y. Aptamer-targeted DNA nanostructures with doxorubicin to deal with protein tyrosine kinase 7-positive tumours. Cell Prolif. 2019;52: e12511.

    PubMed 

    Google Scholar
     

  • 53.

    Ren T, Deng ZW, Liu H, Li XF, Li JB, Yuan J, He Y, Liu Q, Yang YJ, Zhong SA. Co-delivery of DNAzyme and a chemotherapy drug utilizing a DNA tetrahedron for enhanced anticancer remedy by synergistic results. New J Chem. 2019;43:14020–7.

    CAS 

    Google Scholar
     

  • 54.

    Keum JW, Ahn JH, Bermudez H. Design, meeting, and exercise of antisense DNA nanostructures. Small. 2011;7:3529–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Zhou T, Wang Y, Dong Y, Chen C, Liu D, Yang Z. Tetrahedron DNA dendrimers and their encapsulation of gold nanoparticles. Bioorg Med Chem. 2014;22:4391–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Taylor AI, Beuron F, Peak-Chew SY, Morris EP, Herdewijn P, Holliger P. Nanostructures from artificial genetic polymers. ChemBioChem. 2016;17:1107–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Tian YQ, Huang YY, Gao P, Chen TF. Nucleus-targeted DNA tetrahedron as a nanocarrier of steel complexes for enhanced glioma remedy. Chem Commun. 2018;54:9394–7.

    CAS 

    Google Scholar
     

  • 58.

    Zhang C, Su M, He Y, Leng Y, Ribbe AE, Wang G, Jiang W, Mao C. Exterior modification of a DNA tetrahedron. Chem Commun. 2010;46:6792–4.

    CAS 

    Google Scholar
     

  • 59.

    Wang ZG, Xue QW, Tian WZ, Wang L, Jiang W. Quantitative detection of single DNA molecules on DNA tetrahedron embellished substrates. Chem Commun. 2012;48:9661–3.

    CAS 

    Google Scholar
     

  • 60.

    Schlapak R, Danzberger J, Armitage D, Morgan D, Ebner A, Hinterdorfer P, Pollheimer P, Gruber HJ, Schaffler F, Howorka S. Nanoscale DNA ttrahedra enhance biomolecular recognition on patterned surfaces. Small. 2012;8:89–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Pei H, Lu N, Wen YL, Tune SP, Liu Y, Yan H, Fan CH. A DNA nanostructure-based biomolecular probe provider platform for electrochemical biosensing. Adv Mater. 2010;22:4754.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Soundararajan S, Chen WW, Spicer EK, Courtenay-Luck N, Fernandes DJ. The nucleolin concentrating on aptamer AS1411 destabilizes bcl-2 messenger RNA in human breast most cancers cells. Most cancers Res. 2008;68:2358–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Reyes-Reyes EM, Teng Y, Bates PJ. A brand new paradigm for aptamer therapeutic AS1411 motion: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Most cancers Res. 2010;70:8617–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Xu XH, Hamhouyia F, Thomas SD, Burke TJ, Girvan AC, McGregor WG, Trent JO, Miller DM, Bates PJ. Inhibition of DNA replication and induction of S section cell cycle arrest by G-rich oligonucleotides. J Biol Chem. 2001;276:43221–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor exercise and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Zhang C, Li X, Tian C, Yu GM, Li YL, Jiang W, Mao CD. DNA nanocages swallow gold nanoparticles (AuNPs) to kind AuNP@DNA cage core-shell constructions. ACS Nano. 2014;8:1130–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel brokers for most cancers remedy. Br J Radiol. 2012;85:101–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Xiao ZY, Ji CW, Shi JJ, Pridgen EM, Frieder J, Wu J, Farokhzad OC. DNA self-assembly of focused near-infrared-responsive gold nanoparticles for most cancers thermo-chemotherapy. Angew Chem Int Ed. 2012;51:11853–7.

    CAS 

    Google Scholar
     

  • 69.

    Wang F, Wang YC, Dou S, Xiong MH, Solar TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug supply for overcoming multidrug resistance in most cancers cells. ACS Nano. 2011;5:3679–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Yuan L, Giovanni M, Xie JP, Fan CH, Leong DT. Ultrasensitive IgG quantification utilizing DNA nano-pyramids. NPG Asia Mater. 2014;6:e112.

    CAS 

    Google Scholar
     

  • 71.

    Walsh AS, Yin HF, Erben CM, Wooden MJA, Turberfield AJ. DNA cage supply to mammalian cells. ACS Nano. 2011;5:5427–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Sacca B, Niemeyer CM. Functionalization of DNA nanostructures with proteins. Chem Soc Rev. 2011;40:5910–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Zhang T, Tian TR, Zhou RH, Li SH, Ma WJ, Zhang YX, Liu NX, Shi SR, Li QS, Xie XP, Ge YC, Liu MT, Zhang Q, Lin SY, Cai XX, Lin YF. Design, fabrication and purposes of tetrahedral DNA nanostructure-based multifunctional complexes in drug supply and biomedical remedy. Nat Protoc. 2020;15:2728–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM. The impact of particle design on mobile internalization pathways. Proc Natl Acad Sci USA. 2008;105:11613–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Keum JW, Bermudez H. DNA-based supply autos: pH-controlled disassembly and cargo launch. Chem Commun. 2012;48:12118–20.

    CAS 

    Google Scholar
     

  • 76.

    Han D, Huang J, Zhu Z, Yuan QA, You MX, Chen Y, Tan WH. Molecular engineering of photoresponsive three-dimensional DNA nanostructures. Chem Commun. 2011;47:4670–2.

    CAS 

    Google Scholar
     

  • 77.

    Pei H, Liang L, Yao GB, Li J, Huang Q, Fan CH. Reconfigurable three-dimensional DNA nanostructures for the development of intracellular logic sensors. Angew Chem Int Ed. 2012;51:9020–4.

    CAS 

    Google Scholar
     

  • 78.

    Wang P, Xia ZW, Yan J, Liu XW, Yao GB, Pei H, Zuo XL, Solar G, He DN. A examine of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures. Nanoscale. 2015;7:6467–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Liu ZY, Li YM, Tian C, Mao CD. A sensible DNA tetrahedron that isothermally assembles or dissociates in response to the answer pH worth modifications. Biomacromolecules. 2013;14:1711–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Kim SH, Kim KR, Ahn DR, Lee JE, Yang EG, Kim SY. Reversible regulation of enzyme exercise by pH-responsive encapsulation in DNA nanocages. ACS Nano. 2017;11:9352–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA practical supplies assembled from branched DNA: design, synthesis, and purposes. Chem Rev. 2020;120:9420–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Endo M, Majima T. Management of a double helix DNA meeting by use of cross-linked oligonucleotides. J Am Chem Soc. 2003;125:13654–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Qu AH, Wu XL, Li S, Solar MZ, Xu LG, Kuang H, Xu CL. An NIR-responsive DNA-mediated nanotetrahedron enhances the clearance of senescent cells. Adv Mater. 2020;32:184–93.


    Google Scholar
     

  • 84.

    Mo R, Jiang TY, Solar WJ, Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug supply. Biomaterials. 2015;50:67–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Shen YZ, Tian Q, Solar YD, Xu JJ, Ye DJ, Chen HY. ATP-activatable photosensitizer allows twin fluorescence imaging and focused photodynamic remedy of tumor. Anal Chem. 2017;89:13610–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Oh SS, Plakos Ok, Xiao Y, Eisenstein M, Soh HT. In vitro choice of shape-changing DNA nanostructures able to binding-induced cargo launch. ACS Nano. 2013;7:9675–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Mo R, Jiang TY, DiSanto R, Tai WY, Gu Z. ATP-triggered anticancer drug supply. Nat Commun. 2014;5:3364–73.

    PubMed 

    Google Scholar
     

  • 88.

    Abi A, Lin MH, Pei H, Fan CH, Ferapontova EE, Zuo XL. Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS Appl Mater Inter. 2014;6:8928–31.

    CAS 

    Google Scholar
     

  • 89.

    Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol. 2008;3:93–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Zhang C, Tian C, Li X, Qian H, Hao CH, Jiang W, Mao CD. Reversibly switching the floor porosity of a DNA tetrahedron. J Am Chem Soc. 2012;134:11998–2001.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based most cancers remedy. Nat Rev Most cancers. 2020;21:37–50.

    PubMed 

    Google Scholar
     

  • 92.

    Adamsen BL, Kravik KL, De Angelis PM. DNA harm signaling in response to 5-fluorouracil in three colorectal most cancers cell traces with completely different mismatch restore and TP53 standing. Int J Oncol. 2011;39:673–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks through mammalian DNA topoisomerase-I. J Biol Chem. 1985;260:4873–8.


    Google Scholar
     

  • 94.

    Schiff PB, Fant J, Horwitz SB. Promotion of microtubule meeting in vitro by Taxol. Nature. 1979;277:665–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Yan J, Zhang N, Zhang Z, Zhu W, Li B, Li L, Pu Y, He B. Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to beat multidrug resistance. J Management Launch. 2020;329:36–49.

    PubMed 

    Google Scholar
     

  • 96.

    He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature. 2008;452:198–201.

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    Chang KW, Tang Y, Fang XF, Yin SY, Xu H, Wu CF. Incorporation of porphyrin to π-conjugated spine for polymer-dot-sensitized photodynamic remedy. Biomacromol. 2016;17:2128–36.

    CAS 

    Google Scholar
     

  • 98.

    Zhuang XX, Ma XW, Xue XD, Jiang Q, Tune LL, Dai LR, Zhang CQ, Jin SB, Yang KN, Ding BQ, Wang PC, Liang XJ. A photosensitizer-loaded DNA origami nanosystem for photodynamic remedy. ACS Nano. 2016;10:3486–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic remedy. JNCI. 1998;90:889–905.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Dolmans D, Fukumura D, Jain RK. Photodynamic remedy for most cancers. Nat Rev Most cancers. 2003;3:380–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Park J, Jiang Q, Feng DW, Mao LQ, Zhou HC. Dimension-controlled synthesis of porphyrinic steel–natural framework and functionalization for focused photodynamic remedy. J Am Chem Soc. 2016;138:3518–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DCG, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT. Ligand-induced conformational modifications allosterically activate Toll-like receptor 9. Nat Immunol. 2007;8:772–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Krieg AM. CpG motifs in bacterial DNA and their immune results. Annu Rev Immunol. 2002;20:709–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino Ok, Wagner H, Takeda Ok, Akira S. A Toll-like receptor acknowledges bacterial DNA. Nature. 2000;408:740–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Klinman DM. Immunotherapeutic makes use of of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004;4:248–57.


    Google Scholar
     

  • 106.

    Liu JB, Wu TT, Lu XH, Wu XH, Liu SL, Zhao S, Xu XH, Ding BQ. A self-assembled platform based mostly on branched DNA for sgRNA/Cas9/antisense supply. J Am Chem Soc. 2019;141:19032–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Wen AM, Steinmetz NF. Design of virus-based nanomaterials for drugs, biotechnology, and power. Chem Soc Rev. 2016;45:4074–126.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Tian T, Zhang T, Zhou T, Lin S, Shi S, Lin Y. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure advanced and its potential software as a multi-functional supply car. Nanoscale. 2017;9:18402–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Ge Y, Tian T, Shao X, Lin S, Zhang T, Lin Y, Cai X. PEGylated protamine-based adsorbing improves the organic properties and stability of tetrahedral framework nucleic acids. ACS Appl Mater Inter. 2019;11:27588–97.

    CAS 

    Google Scholar
     

  • 110.

    Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its function in gene supply. J Management Launch. 1999;60:149–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Chen W, Zhong P, Meng FH, Cheng R, Deng C, Feijen J, Zhong ZY. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug launch. J Management Launch. 2013;169:171–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Hu QQ, Li H, Wang LH, Gu HZ, Fan CH. DNA nanotechnology-enabled drug supply techniques. Chem Rev. 2019;119:6459–506.

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    Yu JW, Liu ZY, Jiang W, Wang GS, Mao CD. De novo design of an RNA tile that self-assembles right into a homo-octameric nanoprism. Nat Commun. 2015;6:1–6.


    Google Scholar
     

  • 114.

    Cavalier-Smith T. Nuclear quantity management by nucleoskeletal DNA, choice for cell quantity and cell progress charge, and the answer of the DNA C-value paradox. J Cell Sci. 1978;34:247–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Gregory TR. Coincidence, coevolution, or causation? DNA content material, cell measurement, and the C-value enigma. Biol Rev. 2001;76:65–101.

    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    Jiang D, Rosenkrans ZT, Ni D, Lin J, Huang P, Cai W. Nanomedicines for renal administration: from imaging to remedy. Acc Chem Res. 2020;53:1869–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 117.

    Jiang D, Im HJ, Boleyn ME, England CG, Ni D, Kang L, Engle JW, Huang P, Lan X, Cai W. Environment friendly renal clearance of DNA tetrahedron nanoparticles allows quantitative analysis of kidney perform. Nano Res. 2019;12:637–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Jiang D, Solar Y, Li J, Li Q, Lv M, Zhu B, Tian T, Cheng D, Xia J, Zhang L, Wang L, Huang Q, Shi J, Fan C. A number of-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl Mater Interfaces. 2016;8:4378–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Bellot G, McClintock MA, Lin CX, Shih WM. Restoration of intact DNA nanostructures after agarose gel-based separation. Nat Strategies. 2011;8:192–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Lin CX, Perrault SD, Kwak M, Graf F, Shih WM. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 2013;41:40–5.


    Google Scholar
     

  • [ad_2]

    Previous Article

    Intuit's Spectacular Mailchimp Acquisition, A Blue Prism Growth & Vaccine Manufacturing

    Next Article

    Incorporate Cell Advertising into Your Technique for on-line Enterprise

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨