[ad_1]
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Utility of liposomes in drugs and drug supply. Artif Cell Nanomed B. 2016;44:381–91.
Jiang L, Li L, He XD, Yi QY, He B, Cao J, Pan WS, Gu ZW. Overcoming drug-resistant lung most cancers by paclitaxel loaded dual-functional liposomes with mitochondria concentrating on and pH-response. Biomaterials. 2015;52:126–39.
Aziz ZABA, Ahmad A, Mohd-Setapar SH, Hassan H, Lokhat D, Kamal MA, Ashraf GM. Latest advances in drug supply of polymeric nano-micelles. Curr Drug Metab. 2017;18:16–29.
Varde NK, Pack DW. Microspheres for managed launch drug supply. Professional Opin Biol Ther. 2004;4:35–51.
Kaneshiro TL, Lu ZR. Focused intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular provider. Biomaterials. 2009;30:5660–6.
Ma D, Lin QM, Zhang LM, Liang YY, Xue W. A star-shaped porphyrin-arginine functionalized poly(l-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials. 2014;35:4357–67.
Hutter E, Fendler JH. Exploitation of localized floor plasmon resonance. Adv Mater. 2004;16:1685–706.
Xia XH, Yang MX, Oetjen LK, Zhang Y, Li QG, Chen JY, Xia YN. An enzyme-sensitive probe for photoacoustic imaging and fluorescence detection of protease exercise. Nanoscale. 2011;3:950–3.
Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and purposes of nanodiamonds. Nat Nanotechnol. 2012;7:11–23.
Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–44.
Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as managed launch drug supply and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278–88.
Cao C, Yang N, Zhao Y, Yang D, Hu Y, Yang D, Tune X, Wang W, Dong X. Biodegradable hydrogel with thermo-response and hemostatic impact for photothermal enhanced anti-infective remedy. Nano Immediately. 2021;39: 101165.
Yang D, Tu Y, Wang X, Cao C, Hu Y, Shao J, Weng L, Mou X, Dong X. A photograph-triggered antifungal nanoplatform with efflux pump and warmth shock protein reversal exercise for enhanced chemo-photothermal synergistic remedy. Biomater Sci. 2021;9:3293–9.
Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ. Speedy chiral meeting of inflexible DNA constructing blocks for molecular nanofabrication. Science. 2005;310:1661–5.
Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan CH. Self-assembled multivalent DNA nanostructures for noninvasive intracellular supply of immunostimulatory CpG oligonucleotides. ACS Nano. 2011;5:8783–9.
Bergamini C, Angelini P, Rhoden KJ, Porcelli AM, Fato R, Zuccheri G. A sensible method for the detection of DNA nanostructures in single stay human cells by fluorescence microscopy. Strategies. 2014;67:185–92.
Charoenphol P, Bermudez H. Design and software of multifunctional DNA nanocarriers for therapeutic supply. Acta Biomater. 2014;10:1683–91.
Goodman RP, Berry RM, Turberfield AJ. The one-step synthesis of a DNA tetrahedron. Chem Commun. 2004. https://doi.org/10.1039/B402293A.
Ma WJ, Zhan YX, Zhang YX, Xie XP, Mao CC, Lin YF. Enhanced neural regeneration with a concomitant remedy of framework nucleic acid and stem cells in spinal twine harm. ACS Appl Mater Interfaces. 2020;12:2095–106.
Carter MLJ, Rusling DA, Gurr S, Brown T, Fox KR. Stability of the completely different arms of a DNA tetrahedron and its interplay with a minor groove ligand. Biophys Chem. 2020;256: 106270.
Li SH, Solar Y, Tian TR, Qin X, Lin SY, Zhang T, Zhang Q, Zhou M, Zhang XL, Zhou Y, Zhao H, Zhu BF, Cai XX. MicroRNA-214-3p modified tetrahedral framework nucleic acids goal survivin to induce tumour cell apoptosis. Cell Prolif. 2020;53:12708–21.
Shi SR, Yang C, Tian TR, Li SH, Lin SY, Zhang YX, Shao XR, Tao Z, Lin YF, Cai XX. Results of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 2020;8:87–99.
Kim KR, Kim DR, Lee T, Yhee JY, Kim BS, Kwon IC, Ahn DR. Drug supply by a self-assembled DNA tetrahedron for overcoming drug resistance in breast most cancers cells. Chem Commun. 2013;49:2010–2.
Ozhalici-Unal H, Armitage BA. Fluorescent DNA nanotags based mostly on a self-assembled DNA tetrahedron. ACS Nano. 2009;3:425–33.
Ding YS, Liu XT, Zhu J, Wang L, Jiang W. Quantitative single-molecule detection of protein based mostly on DNA tetrahedron fluorescent nanolabels. Talanta. 2014;125:393–9.
Charoenphol P, Bermudez H. Aptamer-targeted DNA nanostructures for therapeutic supply. Mol Pharm. 2014;11:1721–5.
Erben CM, Goodman RP, Turberfield AJ. Single-molecule protein encapsulation in a inflexible DNA cage. Angew Chem Int Ed. 2006;45:7414–7.
Lee H, Lytton-Jean AKR, Chen Y, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M, Peng CG, Charisse Ok, Borodovsky A, Manoharan M, Donahoe JS, Truelove J, Nahrendorf M, Langer R, Anderson DG. Molecularly self-assembled nucleic acid nanoparticles for focused in vivo siRNA supply. Nat Nanotechnol. 2012;7:389–93.
Kim KR, Kim HY, Lee YD, Ha JS, Kang JH, Jeong H, Bang D, Ko YT, Kim S, Lee H, Ahn DR. Self-assembled mirror DNA nanostructures for tumor-specific supply of anticancer medicine. J Management Launch. 2016;243:121–31.
Thai HBD, Kim KR, Hong KT, Voitsitskyi T, Lee JS, Mao C, Ahn DR. Kidney-targeted cytosolic supply of siRNA utilizing a small-sized mirror DNA tetrahedron for enhanced efficiency. ACS Cent Sci. 2020;6:2250–8.
Xie X, Shao X, Ma W, Zhao D, Shi S, Li Q, Lin Y. Overcoming drug-resistant lung most cancers by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale. 2018;10:5457–65.
Wu TT, Liu JB, Liu MM, Liu SL, Zhao S, Tian R, Wei DS, Liu YZ, Zhao Y, Xiao HH, Ding BQ. A nanobody-conjugated DNA nanoplatform for focused platinum-drug supply. Angew Chem Int Ed. 2019;58:14224–8.
Zhang J, Guo Y, Ding F, Pan G, Zhu X, Zhang C. A camptothecin-grafted DNA tetrahedron as a exact nanomedicine to inhibit tumor progress. Angew Chem Int Ed. 2019;58:13794–8.
Zhan Y, Ma W, Zhang Y, Mao C, Shao X, Xie X, Wang F, Liu X, Li Q, Lin Y. DNA-based nanomedicine with concentrating on and enhancement of therapeutic efficacy of breast most cancers cells. ACS Appl Mater Interfaces. 2019;11:15354–65.
Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X. DNA trojan horses: self-assembled floxuridine-containing DNA polyhedra for most cancers remedy. Angew Chem Int Ed. 2017;56:12528–32.
Kim KR, Bang D, Ahn DR. Nano-formulation of a photosensitizer utilizing a DNA tetrahedron and its potential for in vivo photodynamic remedy. Biomater Sci. 2016;4:605–9.
Liu ZC, Pei H, Zhang LM, Tian Y. Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca2+ and pH in neurons. ACS Nano. 2018;12:12357–68.
Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie JP, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6:21822–31.
Setyawati MI, Kutty RV, Leong DT. DNA nanostructures carrying stoichiometrically definable antibodies. Small. 2016;12:5601–11.
Liu XW, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y. A DNA nanostructure platform for directed meeting of artificial vaccines. Nano Lett. 2012;12:4254–9.
Wong NY, Zhang C, Tan LH, Lu Y. Web site-specific attachment of proteins onto a 3D DNA tetrahedron by backbone-modified phosphorothioate DNA. Small. 2011;7:1427–30.
Yan JQ, Chen J, Zhang N, Yang YD, Zhu WW, Li L, He B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin supply and enhancement of apoptosis. J Mater Chem B. 2020;8:492–503.
Tian T, Li J, Xie C, Solar Y, Lei H, Liu X, Xia J, Shi J, Wang L, Lu W, Fan C. Focused imaging of mind tumors with a framework nucleic acid probe. ACS Appl Mater Interfaces. 2018;10:3414–20.
Xia ZW, Wang P, Liu XW, Liu T, Yan YN, Yan J, Zhong J, Solar G, He DN. Tumor-penetrating peptide-modified DNA tetrahedron for concentrating on drug supply. Biochemistry. 2016;55:1326–31.
Wu T, Liu Q, Cao Y, Tian R, Liu J, Ding B. Multifunctional double-bundle DNA tetrahedron for environment friendly regulation of gene expression. ACS Appl Mater Interfaces. 2020;12:32461–7.
Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, Fan C. Single-particle monitoring and modulation of cell entry pathways of a tetrahedral DNA nanostructure in stay cells. Angew Chem Int Ed. 2014;53:7745–50.
Yan J, Zhang Z, Zhan X, Chen Ok, Pu Y, Liang Y, He B. In situ injection of dual-delivery PEG based mostly MMP-2 delicate hydrogels for enhanced tumor penetration and chemo-immune mixture remedy. Nanoscale. 2021;13:9577–89.
Yang J, Jiang Q, He L, Zhan P, Liu Q, Liu S, Fu M, Liu J, Li C, Ding B. Self-assembled double-bundle DNA tetrahedron for environment friendly antisense supply. ACS Appl Mater Interfaces. 2018;10:23693–9.
Tian TR, Xiao DX, Zhang T, Li YJ, Shi SR, Zhong WY, Gong P, Liu Z, Li Q, Lin YF. A framework nucleic acid based mostly robotic nanobee for energetic concentrating on remedy. Adv Funct Mater. 2021;31:2007342–51.
Li Q, Zhao D, Shao X, Lin S, Xie X, Liu M, Ma W, Shi S, Lin Y. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug supply. ACS Appl Mater Interfaces. 2017;9:36695–701.
Kim Ok-R, Lee T, Kim B-S, Ahn D-R. Using the bioorthogonal base-pairing system of l-DNA to design excellent DNA nanocarriers for enhanced supply of nucleic acid cargos. Chem Sci. 2014;5(1533):1537.
Liu M, Ma W, Li Q, Zhao D, Shao X, Huang Q, Hao L, Lin Y. Aptamer-targeted DNA nanostructures with doxorubicin to deal with protein tyrosine kinase 7-positive tumours. Cell Prolif. 2019;52: e12511.
Ren T, Deng ZW, Liu H, Li XF, Li JB, Yuan J, He Y, Liu Q, Yang YJ, Zhong SA. Co-delivery of DNAzyme and a chemotherapy drug utilizing a DNA tetrahedron for enhanced anticancer remedy by synergistic results. New J Chem. 2019;43:14020–7.
Keum JW, Ahn JH, Bermudez H. Design, meeting, and exercise of antisense DNA nanostructures. Small. 2011;7:3529–35.
Zhou T, Wang Y, Dong Y, Chen C, Liu D, Yang Z. Tetrahedron DNA dendrimers and their encapsulation of gold nanoparticles. Bioorg Med Chem. 2014;22:4391–4.
Taylor AI, Beuron F, Peak-Chew SY, Morris EP, Herdewijn P, Holliger P. Nanostructures from artificial genetic polymers. ChemBioChem. 2016;17:1107–10.
Tian YQ, Huang YY, Gao P, Chen TF. Nucleus-targeted DNA tetrahedron as a nanocarrier of steel complexes for enhanced glioma remedy. Chem Commun. 2018;54:9394–7.
Zhang C, Su M, He Y, Leng Y, Ribbe AE, Wang G, Jiang W, Mao C. Exterior modification of a DNA tetrahedron. Chem Commun. 2010;46:6792–4.
Wang ZG, Xue QW, Tian WZ, Wang L, Jiang W. Quantitative detection of single DNA molecules on DNA tetrahedron embellished substrates. Chem Commun. 2012;48:9661–3.
Schlapak R, Danzberger J, Armitage D, Morgan D, Ebner A, Hinterdorfer P, Pollheimer P, Gruber HJ, Schaffler F, Howorka S. Nanoscale DNA ttrahedra enhance biomolecular recognition on patterned surfaces. Small. 2012;8:89–97.
Pei H, Lu N, Wen YL, Tune SP, Liu Y, Yan H, Fan CH. A DNA nanostructure-based biomolecular probe provider platform for electrochemical biosensing. Adv Mater. 2010;22:4754.
Soundararajan S, Chen WW, Spicer EK, Courtenay-Luck N, Fernandes DJ. The nucleolin concentrating on aptamer AS1411 destabilizes bcl-2 messenger RNA in human breast most cancers cells. Most cancers Res. 2008;68:2358–65.
Reyes-Reyes EM, Teng Y, Bates PJ. A brand new paradigm for aptamer therapeutic AS1411 motion: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Most cancers Res. 2010;70:8617–29.
Xu XH, Hamhouyia F, Thomas SD, Burke TJ, Girvan AC, McGregor WG, Trent JO, Miller DM, Bates PJ. Inhibition of DNA replication and induction of S section cell cycle arrest by G-rich oligonucleotides. J Biol Chem. 2001;276:43221–30.
Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor exercise and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.
Zhang C, Li X, Tian C, Yu GM, Li YL, Jiang W, Mao CD. DNA nanocages swallow gold nanoparticles (AuNPs) to kind AuNP@DNA cage core-shell constructions. ACS Nano. 2014;8:1130–5.
Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel brokers for most cancers remedy. Br J Radiol. 2012;85:101–13.
Xiao ZY, Ji CW, Shi JJ, Pridgen EM, Frieder J, Wu J, Farokhzad OC. DNA self-assembly of focused near-infrared-responsive gold nanoparticles for most cancers thermo-chemotherapy. Angew Chem Int Ed. 2012;51:11853–7.
Wang F, Wang YC, Dou S, Xiong MH, Solar TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug supply for overcoming multidrug resistance in most cancers cells. ACS Nano. 2011;5:3679–92.
Yuan L, Giovanni M, Xie JP, Fan CH, Leong DT. Ultrasensitive IgG quantification utilizing DNA nano-pyramids. NPG Asia Mater. 2014;6:e112.
Walsh AS, Yin HF, Erben CM, Wooden MJA, Turberfield AJ. DNA cage supply to mammalian cells. ACS Nano. 2011;5:5427–32.
Sacca B, Niemeyer CM. Functionalization of DNA nanostructures with proteins. Chem Soc Rev. 2011;40:5910–21.
Zhang T, Tian TR, Zhou RH, Li SH, Ma WJ, Zhang YX, Liu NX, Shi SR, Li QS, Xie XP, Ge YC, Liu MT, Zhang Q, Lin SY, Cai XX, Lin YF. Design, fabrication and purposes of tetrahedral DNA nanostructure-based multifunctional complexes in drug supply and biomedical remedy. Nat Protoc. 2020;15:2728–57.
Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM. The impact of particle design on mobile internalization pathways. Proc Natl Acad Sci USA. 2008;105:11613–8.
Keum JW, Bermudez H. DNA-based supply autos: pH-controlled disassembly and cargo launch. Chem Commun. 2012;48:12118–20.
Han D, Huang J, Zhu Z, Yuan QA, You MX, Chen Y, Tan WH. Molecular engineering of photoresponsive three-dimensional DNA nanostructures. Chem Commun. 2011;47:4670–2.
Pei H, Liang L, Yao GB, Li J, Huang Q, Fan CH. Reconfigurable three-dimensional DNA nanostructures for the development of intracellular logic sensors. Angew Chem Int Ed. 2012;51:9020–4.
Wang P, Xia ZW, Yan J, Liu XW, Yao GB, Pei H, Zuo XL, Solar G, He DN. A examine of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures. Nanoscale. 2015;7:6467–70.
Liu ZY, Li YM, Tian C, Mao CD. A sensible DNA tetrahedron that isothermally assembles or dissociates in response to the answer pH worth modifications. Biomacromolecules. 2013;14:1711–4.
Kim SH, Kim KR, Ahn DR, Lee JE, Yang EG, Kim SY. Reversible regulation of enzyme exercise by pH-responsive encapsulation in DNA nanocages. ACS Nano. 2017;11:9352–9.
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA practical supplies assembled from branched DNA: design, synthesis, and purposes. Chem Rev. 2020;120:9420–81.
Endo M, Majima T. Management of a double helix DNA meeting by use of cross-linked oligonucleotides. J Am Chem Soc. 2003;125:13654–5.
Qu AH, Wu XL, Li S, Solar MZ, Xu LG, Kuang H, Xu CL. An NIR-responsive DNA-mediated nanotetrahedron enhances the clearance of senescent cells. Adv Mater. 2020;32:184–93.
Mo R, Jiang TY, Solar WJ, Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug supply. Biomaterials. 2015;50:67–74.
Shen YZ, Tian Q, Solar YD, Xu JJ, Ye DJ, Chen HY. ATP-activatable photosensitizer allows twin fluorescence imaging and focused photodynamic remedy of tumor. Anal Chem. 2017;89:13610–7.
Oh SS, Plakos Ok, Xiao Y, Eisenstein M, Soh HT. In vitro choice of shape-changing DNA nanostructures able to binding-induced cargo launch. ACS Nano. 2013;7:9675–83.
Mo R, Jiang TY, DiSanto R, Tai WY, Gu Z. ATP-triggered anticancer drug supply. Nat Commun. 2014;5:3364–73.
Abi A, Lin MH, Pei H, Fan CH, Ferapontova EE, Zuo XL. Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS Appl Mater Inter. 2014;6:8928–31.
Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol. 2008;3:93–6.
Zhang C, Tian C, Li X, Qian H, Hao CH, Jiang W, Mao CD. Reversibly switching the floor porosity of a DNA tetrahedron. J Am Chem Soc. 2012;134:11998–2001.
Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based most cancers remedy. Nat Rev Most cancers. 2020;21:37–50.
Adamsen BL, Kravik KL, De Angelis PM. DNA harm signaling in response to 5-fluorouracil in three colorectal most cancers cell traces with completely different mismatch restore and TP53 standing. Int J Oncol. 2011;39:673–82.
Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks through mammalian DNA topoisomerase-I. J Biol Chem. 1985;260:4873–8.
Schiff PB, Fant J, Horwitz SB. Promotion of microtubule meeting in vitro by Taxol. Nature. 1979;277:665–7.
Yan J, Zhang N, Zhang Z, Zhu W, Li B, Li L, Pu Y, He B. Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to beat multidrug resistance. J Management Launch. 2020;329:36–49.
He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature. 2008;452:198–201.
Chang KW, Tang Y, Fang XF, Yin SY, Xu H, Wu CF. Incorporation of porphyrin to π-conjugated spine for polymer-dot-sensitized photodynamic remedy. Biomacromol. 2016;17:2128–36.
Zhuang XX, Ma XW, Xue XD, Jiang Q, Tune LL, Dai LR, Zhang CQ, Jin SB, Yang KN, Ding BQ, Wang PC, Liang XJ. A photosensitizer-loaded DNA origami nanosystem for photodynamic remedy. ACS Nano. 2016;10:3486–95.
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic remedy. JNCI. 1998;90:889–905.
Dolmans D, Fukumura D, Jain RK. Photodynamic remedy for most cancers. Nat Rev Most cancers. 2003;3:380–7.
Park J, Jiang Q, Feng DW, Mao LQ, Zhou HC. Dimension-controlled synthesis of porphyrinic steel–natural framework and functionalization for focused photodynamic remedy. J Am Chem Soc. 2016;138:3518–25.
Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DCG, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT. Ligand-induced conformational modifications allosterically activate Toll-like receptor 9. Nat Immunol. 2007;8:772–9.
Krieg AM. CpG motifs in bacterial DNA and their immune results. Annu Rev Immunol. 2002;20:709–60.
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino Ok, Wagner H, Takeda Ok, Akira S. A Toll-like receptor acknowledges bacterial DNA. Nature. 2000;408:740–5.
Klinman DM. Immunotherapeutic makes use of of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004;4:248–57.
Liu JB, Wu TT, Lu XH, Wu XH, Liu SL, Zhao S, Xu XH, Ding BQ. A self-assembled platform based mostly on branched DNA for sgRNA/Cas9/antisense supply. J Am Chem Soc. 2019;141:19032–7.
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for drugs, biotechnology, and power. Chem Soc Rev. 2016;45:4074–126.
Tian T, Zhang T, Zhou T, Lin S, Shi S, Lin Y. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure advanced and its potential software as a multi-functional supply car. Nanoscale. 2017;9:18402–12.
Ge Y, Tian T, Shao X, Lin S, Zhang T, Lin Y, Cai X. PEGylated protamine-based adsorbing improves the organic properties and stability of tetrahedral framework nucleic acids. ACS Appl Mater Inter. 2019;11:27588–97.
Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its function in gene supply. J Management Launch. 1999;60:149–60.
Chen W, Zhong P, Meng FH, Cheng R, Deng C, Feijen J, Zhong ZY. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug launch. J Management Launch. 2013;169:171–9.
Hu QQ, Li H, Wang LH, Gu HZ, Fan CH. DNA nanotechnology-enabled drug supply techniques. Chem Rev. 2019;119:6459–506.
Yu JW, Liu ZY, Jiang W, Wang GS, Mao CD. De novo design of an RNA tile that self-assembles right into a homo-octameric nanoprism. Nat Commun. 2015;6:1–6.
Cavalier-Smith T. Nuclear quantity management by nucleoskeletal DNA, choice for cell quantity and cell progress charge, and the answer of the DNA C-value paradox. J Cell Sci. 1978;34:247–78.
Gregory TR. Coincidence, coevolution, or causation? DNA content material, cell measurement, and the C-value enigma. Biol Rev. 2001;76:65–101.
Jiang D, Rosenkrans ZT, Ni D, Lin J, Huang P, Cai W. Nanomedicines for renal administration: from imaging to remedy. Acc Chem Res. 2020;53:1869–80.
Jiang D, Im HJ, Boleyn ME, England CG, Ni D, Kang L, Engle JW, Huang P, Lan X, Cai W. Environment friendly renal clearance of DNA tetrahedron nanoparticles allows quantitative analysis of kidney perform. Nano Res. 2019;12:637–42.
Jiang D, Solar Y, Li J, Li Q, Lv M, Zhu B, Tian T, Cheng D, Xia J, Zhang L, Wang L, Huang Q, Shi J, Fan C. A number of-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl Mater Interfaces. 2016;8:4378–84.
Bellot G, McClintock MA, Lin CX, Shih WM. Restoration of intact DNA nanostructures after agarose gel-based separation. Nat Strategies. 2011;8:192–4.
Lin CX, Perrault SD, Kwak M, Graf F, Shih WM. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 2013;41:40–5.
[ad_2]