Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug supply | Journal of Nanobiotechnology

Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug supply | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.

    PubMed 

    Google Scholar
     

  • 2.

    Burstein HJ, Krilov L, Aragon-Ching JB, Baxter NN, Chiorean EG, Chow WA, Groot JFD, Devine SM, DuBois SG, El-Deiry WS. Scientific most cancers advances 2017: annual report on progress in opposition to most cancers from the American Society of Scientific Oncology. J Clin Oncol. 2017;35:1341–67.

    PubMed 

    Google Scholar
     

  • 3.

    Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic most cancers remedy. Chem Rev. 2017;117:13566–638.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Qin S, Cheng Y, Lei Q, Zhang A, Zhang X. Combinational technique for high-performance most cancers chemotherapy. Biomaterials. 2018;171:178–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Vasan N, Baselga J, Hyman DM. A view on drug resistance in most cancers. Nature. 2019;575:299–309.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Luo C, Solar J, Solar B, He Z. Prodrug-based nanoparticulate drug supply methods for most cancers remedy. Tendencies Pharmacol Sci. 2014;35:556–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Meel RVD, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Sensible most cancers nanomedicine. Nat Nanotechnol. 2019;14:1007–17.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Latest developments in liposome expertise. Adv Drug Deliv Rev. 2020;156:4–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Cheng Z, Cheng Y, Chen Q, Li M, Wang J, Liu H, Li M, Ning Y, Yu Z, Wang Y. Self-assembly of pentapeptides into morphology-adaptable nanomedicines for enhanced combinatorial chemo-photodynamic remedy. Nano As we speak. 2020;33: 100878.

    CAS 

    Google Scholar
     

  • 10.

    Tran S, DeGiovanni PJ, Piel B, Rai P. Most cancers nanomedicine: a evaluate of current success in drug supply. Clin Transl Med. 2017;6:1–21.


    Google Scholar
     

  • 11.

    Mura S, Bui DT, Couvreur P, Nicolas J. Lipid prodrug nanocarriers in most cancers remedy. J Management Launch. 2015;208:25–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Lim SB, Banerjee A, Önyüksel H. Enchancment of drug security by means of lipid-based nanocarriers. J Management Launch. 2012;163:34–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Sengupta P, Basu S, Soni S, Pandey A, Roy B, Oh MS, Chin KT, Paraskar AS, Sarangi S, Connor Y. Ldl cholesterol-tethered platinum II-based supramolecular nanoparticle will increase antitumor efficacy and reduces nephrotoxicity. Proc Natl Acad Sci USA. 2012;109:11294–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Mei S, Hong L, Cai X, Xiao B, Zhang P, Shao L. Oxidative stress harm in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41–8.


    Google Scholar
     

  • 15.

    Earl HM, Hiller L, Howard HC, Dunn JA, Younger J, Bowden SJ, McDermaid M, Waterhouse AK, Wilson G, Agrawal R. Addition of gemcitabine to paclitaxel, epirubicin, and cyclophosphamide adjuvant chemotherapy for girls with early-stage breast most cancers (tAnGo): remaining 10-year follow-up of an open-label, randomised, part 3 trial. Lancet Oncol. 2017;18:755–69.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev. 2017;118:65–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Albert A. Chemical points of selective toxicity. Nature. 1958;182:421–3.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu Okay. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic most cancers remedy. Angew Chem Int Ed. 2019;58:5920–4.

    CAS 

    Google Scholar
     

  • 19.

    Solar B, Luo C, Zhang X, Guo M, Solar M, Yu H, Chen Q, Yang W, Wang M, Zuo S. Probing the affect of sulfur/selenium/carbon linkages on prodrug nanoassemblies for most cancers remedy. Nat Commun. 2019;10:3211.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Li S, Zou Q, Xing R, Govindaraju T, Fakhrullin R, Yan X. Peptide-modulated self-assembly as a flexible technique for tumor supramolecular nanotheranostics. Theranostics. 2019;9:3249–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Kim J, Narayana A, Patel S, Sahay G. Advances in intracellular supply by means of supramolecular self-assembly of oligonucleotides and peptides. Theranostics. 2019;9:3191–212.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J. Prodrugs: design and scientific purposes. Nat Rev Drug Discov. 2008;7:255–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Rautio J, Meanwell NA, Di L, Hageman MJ. The increasing function of prodrugs in modern drug design and improvement. Nat Rev Drug Discov. 2018;17:559–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Zhang X, Wang S, Cheng G, Yu P, Chang J, Chen X. Cascade drug-release technique for enhanced anticancer remedy. Matter. 2021;4:26–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Cheng G, Zong W, Guo H, Li F, Zhang X, Yu P, Ren F, Zhang X, Shi X, Gao F. Programmed size-changeable nanotheranostic brokers for enhanced imaging guided chemo/photodynamic mixture remedy and quick elimination. Adv Mater. 2021;33:2100398.

  • 26.

    Wang S, Yu G, Wang Z, Jacobson O, Lin L, Yang W, Deng H, He Z, Liu Y, Chen Z. Enhanced antitumor efficacy by a cascade of reactive oxygen species era and drug launch. Angew Chem Int Ed. 2019;58:14758–63.

    CAS 

    Google Scholar
     

  • 27.

    Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen Z, Chen X. Tumor-specific drug launch and reactive oxygen species era for most cancers chemo/chemodynamic mixture remedy. Adv Sci. 2019;6:1801986.


    Google Scholar
     

  • 28.

    Wang S, Yu G, Zhou Z, Jacobson O, Tian R, Lin L, Zhang F, Wang J, Chen X. Hierarchical tumor microenvironment-responsive nanomedicine for programmed supply of chemotherapeutics. Adv Mater. 2018;30:1803926.


    Google Scholar
     

  • 29.

    Arroyo-Crespo JJ, Deladriere C, Nebot VJ, Charbonnier D, Masiá E, Paul A, James C, Armiñán A, Vicent MJ. Anticancer exercise pushed by drug linker modification in a polyglutamic acid-based combination-drug conjugate[J]. Adv Funct Mater. 2018;28:1800931.


    Google Scholar
     

  • 30.

    Pei P, Solar C, Tao W, Li J, Yang X, Wang J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for exact phototriggered locoregional chemotherapy. Biomaterials. 2019;188:74–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Sreekanth V, Bajaj A. Latest advances in engineering of lipid drug conjugates for most cancers remedy. ACS Biomater Sci Eng. 2019;5:4148–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Irby D, Du C, Li F. Lipid-drug conjugate for enhancing drug supply. Mol Pharm. 2017;14:1325–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Roy S, Brasky TM, Belury MA, Krishnan S, Cole RM, Marian C, Yee LD, Llanos AA, Freudenheim JL, Shields PG. Associations of erythrocyte ω-3 fatty acids with biomarkers of ω-3 fatty acids and irritation in breast tissue. Int J Most cancers. 2015;137:2934–46.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Solar B, Luo C, Cui W, Solar J, He Z. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for most cancers chemotherapy. J Management Launch. 2017;264:145–59.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Rising insights on drug supply by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Management Launch. 2020;326:556–98.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Dahan A, Markovic M, Aponick A, Zimmermann EM, Ben-Shabat S. The prospects of lipidic prodrugs: an previous method with an rising future. Future Med Chem. 2019;11:2563–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Bui D, Nicolas J, Maksimenko A, Desmaële D, Couvreur P. Multifunctional squalene-based prodrug nanoparticles for focused most cancers remedy. Chem Commun. 2014;50:5336–8.

    CAS 

    Google Scholar
     

  • 38.

    Emamzadeh M, Desmaële D, Couvreur P, Pasparakis G. Twin managed supply of squalenoyl-gemcitabine and paclitaxel utilizing thermo-responsive polymeric micelles for pancreatic most cancers. J Mater Chem B. 2018;6:2230–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Mougin J, Yesylevskyy SO, Bourgaux C, Chapron D, Michel JP, Dosio F, Stella B, Ramseyer C, Couvreur P. Stacking as a key property for creating nanoparticles with tunable form: the case of squalenoyl-doxorubicin. ACS Nano. 2019;13:12870–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Gobeaux F, Bizeau J, Samson F, Marichal L, Grillo I, Wien F, Yesylevsky SO, Ramseyer C, Rouquette M, Lepêtre-Mouelhi S. Albumin-driven disassembly of lipidic nanoparticles: the particular case of the squalene-adenosine nanodrug. Nanoscale. 2020;12:2793–809.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Bedikian AY, DeConti RC, Conry R, Agarwala S, Papadopoulos N, Kim KB, Ernstoff M. Section 3 research of docosahexaenoic acid-paclitaxel versus dacarbazine in sufferers with metastatic malignant melanoma. Ann Oncol. 2011;22:787–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Li D, Pant S, Ryan DP, Laheru D, Bahary N, Dragovich T, Hosein PJ, Rolfe L, Saif MW, LaValle J. A part II, open-label, multicenter research to judge the antitumor efficacy of CO-1.01 as second-line remedy for gemcitabine-refractory sufferers with stage IV pancreatic adenocarcinoma and adverse tumor hENT1 expression. Pancreatology. 2014;14:398–402.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Roboz GJ, Rosenblat T, Arellano M, Gobbi M, Altman JK, Montesinos P, O’Connell C, Solomon R, Pigneux A, Vey N. Worldwide randomized part III research of elacytarabine versus investigator alternative in sufferers with relapsed/refractory acute myeloid leukemia. J Clin Oncol. 2014;32:1919–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Luo C, Solar J, Solar B, Liu D, Miao L, Goodwin TJ, Huang L, He Z. Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small. 2016;12:6353–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Luo C, Solar J, Liu D, Solar B, Miao L, Musetti S, Li J, Han X, Du Y, Li L. Self-assembled redox dual-responsive prodrug-nanosystem shaped by single thioether-bridged paclitaxel-fatty acid conjugate for most cancers chemotherapy. Nano Lett. 2016;16:5401–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Wang H, Lu Z, Wang L, Guo T, Wu J, Wan J, Zhou L, Li H, Li Z, Jiang D. New era nanomedicines constructed from self-assembling small-molecule prodrugs alleviate most cancers drug toxicity. Most cancers Res. 2017;77:6963–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Lorscheider M, Tsapis N, Simón-Vázquez R, Guiblin N, Ghermani N, Reynaud F, Canioni R, Abreu S, Chaminade P, Fattal E. Nanoscale lipophilic prodrugs of dexamethasone with enhanced pharmacokinetics. Mol Pharm. 2019;16:2999–3010.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Fang T, Ye Z, Wu J, Wang H. Reprogramming axial ligands facilitates the self-assembly of a platinum(iv) prodrug: overcoming drug resistance and safer in vivo supply of cisplatin. Chem Commun. 2018;54:9167–70.

    CAS 

    Google Scholar
     

  • 49.

    Xie H, Zhu H, Zhou Okay, Wan J, Zhang L, Yang Z, Zhou L, Chen X, Xu X, Zheng S. Goal-oriented supply of self-assembled immunosuppressant cocktails prolongs allogeneic orthotopic liver transplant survival. J Management Launch. 2020;328:237–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Wu L, Zhang F, Chen X, Wan J, Wang Y, Li T, Wang H. Self-assembled gemcitabine prodrug nanoparticles present enhanced efficacy in opposition to patient-derived pancreatic ductal adenocarcinoma. ACS Appl Mater Interfaces. 2019;12:3327–40.


    Google Scholar
     

  • 51.

    Bala V, Rao S, Boyd BJ, Prestidge CA. Prodrug and nanomedicine approaches for the supply of the camptothecin analogue SN38. J Management Launch. 2013;172:48–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Wang H, Xie H, Wu J, Wei X, Xu X, Zheng S. Construction-based rational design of prodrugs to allow their mixture with polymeric nanoparticle supply platforms for enhanced antitumor efficacy. Angew Chem Int Ed. 2014;126:11716–21.


    Google Scholar
     

  • 53.

    Wang H, Xie H, Wang J, Wu J, Ma X, Li L, Wei X, Ling Q, Track P, Zhou L. Self-assembling prodrugs by exact programming of molecular buildings that contribute distinct stability, pharmacokinetics, and antitumor efficacy. Adv Funct Mater. 2015;25:4956–65.

    CAS 

    Google Scholar
     

  • 54.

    Li Y, Wang S, Huang Y, Chen Y, Wu W, Liu Y, Zhang J, Feng Y, Jiang X, Gou M. Mild-activated drug launch from prodrug nanoassemblies by construction destruction. Chem Commun. 2019;55:13128–31.

    CAS 

    Google Scholar
     

  • 55.

    Han S, Hu L, Quach T, Simpson JS, Trevaskis NL, Porter CJH. Profiling the function of deacylation-reacylation within the lymphatic transport of a triglyceride-mimetic prodrug. Pharm Res. 2015;32:1830–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Han S, Quach T, Hu L, Wahab A, Charman WN, Stell VJ, Trevaskis NL, Simpson JS, Porter CJH. Focused supply of a mannequin immunomodulator to the lymphatic system: comparability of alkyl ester versus triglyceride mimetic lipid prodrug methods. J Management Launch. 2014;177:1–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Lee JB, Zgair A, Malec J, Kim TH, Kim MG, Ali J, Qin C, Feng W, Chiang M, Gao X. Lipophilic activated ester prodrug method for drug supply to the intestinal lymphatic system. J Management Launch. 2018;286:10–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Hu L, Quach T, Han S, Lim SF, Yadav P, Senyschyn D, Trevaskis NL, Simpson JS, Porter CJH. Glyceride-mimetic prodrugs incorporating self-immolative spacers promote lymphatic transport, keep away from first-pass metabolism, and improve oral bioavailability. Angew Chem Int Ed. 2016;128:13904–9.


    Google Scholar
     

  • 59.

    Tian C, Guo J, Wang G, Solar B, Na Okay, Zhang X, Xu Z, Cheng M, He Z, Solar J. Environment friendly intestinal digestion and on website tumor-bioactivation are the 2 vital determinants for chylomicron-mediated lymph-targeting triglyceride-mimetic docetaxel oral prodrugs. Adv Sci. 2019;6:1901810.

    CAS 

    Google Scholar
     

  • 60.

    Navacchia ML, Marchesi E, Perrone D. Bile acid conjugates with anticancer exercise: most up-to-date analysis. Molecules. 2021;26:25.

    CAS 

    Google Scholar
     

  • 61.

    Deng F, Bae YH. Bile acid transporter-mediated oral drug supply. J Management Launch. 2020;327:100–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Sreekanth V, Bansal S, Motiani RK, Kundu S, Muppu SK, Majumdar TD, Panjamurthy Okay, Sengupta S, Bajaj A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast most cancers remedy. Bioconjug Chem. 2013;24:1468–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Zhang D, Li D, Shang L, He Z, Solar J. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption. Int J Pharm. 2016;511:161–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Mei KC, Liao YP, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang CH, Zhang X. Liposomal supply of mitoxantrone and a cholesteryl indoximod prodrug offers efficient chemo-immunotherapy in a number of stable tumors. ACS Nano. 2020;14:13343–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Radwan AA, Alanazi FK. Design and synthesis of latest cholesterol-conjugated 5-fluorouracil: a novel potential supply system for most cancers therapy. Molecules. 2014;19:13177–87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Prospects and challenges of phospholipid-based prodrugs. Pharmaceutics. 2018;10:210.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 67.

    Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Molecular modeling-guided design of phospholipid-based prodrugs. Int J Mol Sci. 2019;20:2210.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 68.

    Yu J, Liu Y, Zhou S, Wang Y, Wang Y. Stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles for drug supply and theranostics. Int J Pharm. 2020;590: 119920.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Zaro JL. Lipid-based drug carriers for prodrugs to reinforce drug supply. AAPS J. 2015;17:83–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic brokers for ultrasound focused drug supply. Nanotheranostics. 2020;4:40–56.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Pan D, Schmieder AH, Wang Okay, Yang X, Senpan A, Cui G, Killgore Okay, Kim B, Allen JS, Zhang H. Anti-angiogenesis remedy within the Vx2 rabbit most cancers mannequin with a lipase-cleavable Sn 2 taxane phospholipid prodrug utilizing αvβ3-targeted theranostic nanoparticles. Theranostics. 2014;4:565–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Wang H, Liu X, Wang Y, Chen Y, Jin Q, Ji J. Doxorubicin conjugated phospholipid prodrugs as good nanomedicine platforms for most cancers remedy. J Mater Chem B. 2015;3:3297–305.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Huynh E, Zheng G. Porphysome nanotechnology: a paradigm shift in lipid-based supramolecular buildings. Nano As we speak. 2014;9:212–22.

    CAS 

    Google Scholar
     

  • 74.

    Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G. Porphysome nanovesicles generated by porphyrin bilayers to be used as multimodal biophotonic distinction brokers. Nat Mater. 2011;10:324–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Huynh E, Leung BY, Helfield BL, Shakiba M, Gandier JA, Jin CS, Grasp ER, Wilson BC, Goertz DE, Zheng G. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol. 2015;10:325–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Overchuk M, Zheng M, Rajora MA, Charron DM, Chen J, Zheng G. Tailoring porphyrin conjugation for nanoassembly-driven phototheranostic properties. ACS Nano. 2019;13:4560–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty years of most cancers nanomedicine: success, frustration, and hope. Cancers. 2019;11:1855.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 78.

    Shi J, Kantoff PW, Wooster R, Farokhzad OC. Most cancers nanomedicine: progress, challenges and alternatives. Nat Rev Most cancers. 2017;17:20–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Gadekar V, Borade Y, Kannaujia S. Nanomedicines accessible out there for scientific interventions. J Management Launch. 2020;330:372–97.

    PubMed 

    Google Scholar
     

  • 80.

    Jing F, Guo Q, Xu W, Qu H, Sui Z. Docetaxel prodrug self-assembled nanosystem: synthesis, formulation and cytotoxicity. Bioorg Med Chem Lett. 2018;28:826–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Zhong T, Yao X, Zhang S, Guo Y, Duan XC, Ren W, Huang Dan, Yin YF, Zhang X. A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with greater drug loading and carrier-free attribute. Sci Rep. 2016;6:36614.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Sauraj Kumar V, Kumar B, Deeba F, Bano S, Kulshreshtha A, Gopinath P, Negi YS. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon most cancers remedy. Int J Biol Macromol. 2019;128:204–13.

    PubMed 

    Google Scholar
     

  • 83.

    Dormont F, Brusini R, Cailleau C, Reynaud F, Peramo A, Gendron A, Mougin J, Gaudin F, Varna M, Couvreur P. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled irritation in rodents. Sci Adv. 2020;6:eaaz5466.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Yang X, Chen X, Wang Y, Xu G, Yu L, Ding J. Sustained launch of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy. Chem Eng J. 2020;396:125320.

    CAS 

    Google Scholar
     

  • 85.

    Liang C, Ye W, Zhu C, Na R, Cheng Y, Cui H, Liu D, Yang Z, Zhou S. Synthesis of doxorubicin α-linolenic acid conjugate and analysis of its antitumor exercise. Mol Pharm. 2014;11:1378–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Barry E, Alvarez JA, Scully RE, Miller TL, Lipshultz SE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and administration. Knowledgeable Opin Pharmacother. 2007;8:1039–58.

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, Santos HA. Lipid-polymer hybrid nanoparticles for managed supply of hydrophilic and lipophilic doxorubicin for breast most cancers remedy. Int J Nanomedicine. 2019;14:4961.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Huan M, Zhou S, Teng Z, Zhang B, Liu X, Wang J, Mei Q. Conjugation with α-linolenic acid improves most cancers cell uptake and cytotoxicity of doxorubicin. Bioorg Med Chem Lett. 2009;19:2579–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Huan M, Cui H, Teng Z, Zhang B, Wang J, Liu X, Xia H, Zhou S, Mei Q. In vivo anti-tumor exercise of a brand new doxorubicin conjugate by way of α-linolenic acid. Biosci Biotechnol Biochem. 2012;76:1577–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour-targeting the lymphatic system to advertise drug publicity and exercise. Nat Rev Drug Discov. 2015;14:781–803.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Trevaskis NL, Charman WN, Porter CJH. Lipid-based supply methods and intestinal lymphatic drug transport: a mechanistic replace. Adv Drug Deliv Rev. 2008;60:702–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Dave VS, Gupta D, Yu M, Nguyen P, Gupta SV. Present and evolving approaches for enhancing the oral permeability of BCS Class III or analogous molecules. Drug Dev Ind Pharm. 2017;43:177–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Kalepu S, Nekkanti V. Insoluble drug supply methods: evaluate of current advances and enterprise prospects. Acta Pharm Sin B. 2015;5:442–53.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Lipidic prodrug method for improved oral drug supply and remedy. Med Res Rev. 2019;39:579–607.

    PubMed 

    Google Scholar
     

  • 95.

    Han S, Quach T, Hu L, Lim SF, Gracia G, Trevaskis NL, Simpson JS, Porter CJH. The affect of conjugation place and linker chemistry on the lymphatic transport of a collection of glyceride and phospholipid mimetic prodrugs. J Pharm Sci. 2021;110:489–99.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter Okay, Stoter G, Sparreboom A. Scientific pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Most cancers Res. 2001;7:2182–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    Bala V, Rao S, Li P, Wang S, Prestidge CA. Lipophilic prodrugs of SN38: synthesis and in vitro characterization towards oral chemotherapy. Mol Pharm. 2016;13:287–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Bala V, Rao S, Bateman E, Keefe D, Wang S, Prestidge CA. Enabling oral SN38-based chemotherapy with a mixed lipophilic prodrug and self-microemulsifying drug supply system. Mol Pharm. 2016;13:3518–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Thanki Okay, Prajapati R, Sangamwar AT, Jain S. Lengthy chain fatty acid conjugation remarkably decreases the aggregation induced toxicity of Amphotericin B. Int J Pharm. 2018;544:1–13.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Thanki Okay, Date T, Jain S. Improved oral bioavailability and gastrointestinal stability of amphotericin B by means of fatty acid conjugation method. Mol Pharm. 2019;16:4519–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Bradley MO, Webb NL, Anthony FH, Devanesan P, Witman PA, Hemamalini S, Chander MC, Baker SD, He L, Horwitz SB, Swindell CS. Tumor focusing on by covalent conjugation of a pure fatty acid to paclitaxel. Clin Most cancers Res. 2001;7:3229–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Solar B, Chen Y, Yu H, Wang C, Zhang X, Zhao H, Chen Q, He Z, Luo C, Solar J. Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic remedy. Acta Biomater. 2019;92:219–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Huang L, Wan J, Wu H, Chen X, Bian Q, Shi L, Jiang X, Yuan A, Gao J, Wang H. Quantitative self-assembly of photoactivatable small molecular prodrug cocktails for secure and potent most cancers chemo-photodynamic remedy. Nano As we speak. 2021;36:101030.

    CAS 

    Google Scholar
     

  • 104.

    Shen F, Feng L, Zhu Y, Tao D, Xu J, Peng R, Liu Z. Oxaliplatin-/NLG919 prodrugs-constructed liposomes for efficient chemo-immunotherapy of colorectal most cancers. Biomaterials. 2020;255:120190.

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Han S, Hu L, Gracia Quach T, Simpson JS, Edwards GA, Trevaskis NL, Porter CJ. Lymphatic transport and lymphocyte focusing on of a triglyceride mimetic prodrug is enhanced in a big animal mannequin: research in greyhound canine. Mol Pharm. 2016;13:3351–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Han S, Hu L, Quach T, Simpson JS, Trevaskis NL, Porter CJH. Constitutive triglyceride turnover into the mesenteric lymph is unable to help environment friendly lymphatic transport of a biomimetic triglyceride prodrug. J Pharm Sci. 2016;105:786–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Kochappan R, Cao E, Han S, Hu L, Quach T, Senyschyn D, Ferreira VI, Lee G, Leong N, Sharma G. Focused supply of mycophenolic acid to the mesenteric lymph node utilizing a triglyceride mimetic prodrug method enhances gut-specific immunomodulation in mice. J Management Launch. 2021;332:636–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Mishra R, Mishra S. Updates in bile acid-bioactive molecule conjugates and their purposes. Steroids. 2020;159:108639.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Khatun Z, Nurunnabi M, Reeck GR, Cho KJ, Lee YK. Oral supply of taurocholic acid linked heparin-docetaxel conjugates for most cancers remedy. J Management Launch. 2013;170:74–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 110.

    Khatun Z, Nurunnabi M, Cho KJ, Lee YK. Imaging of the GI tract by QDs loaded heparin-deoxycholic acid (DOCA) nanoparticles. Carbohydr Polym. 2012;90:1461–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Cui W, Zhang S, Zhao H, Luo C, Solar B, Li Z, Solar M, Ye Q, Solar J, He Z. Formulating a single thioether-bridged oleate prodrug right into a self-nanoemulsifying drug supply system to facilitate oral absorption of docetaxel. Biomater Sci. 2019;7:1117–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: price versus good thing about including focusing on and imaging capabilities. Science. 2012;338:903–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 113.

    Huynh E, Lovell JF, Fobel R, Zheng G. Optically managed pore formation in self-sealing large porphyrin vesicles. Small. 2014;10:1184–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Charron DM, Yousefalizadeh G, Buzzá HH, Rajora MA, Chen J, Stamplecoskie KG, Zheng G. Photophysics of J-aggregating porphyrin-lipid photosensitizers in liposomes: affect of lipid saturation. Langmuir. 2020;36:5385–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    MacDonald TD, Liu TW, Zheng G. An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew Chem Int Ed. 2014;126:7076–9.


    Google Scholar
     

  • 116.

    Chen M, Liang X, Dai Z. Manganese (iii)-chelated porphyrin microbubbles for enhanced ultrasound/MR bimodal tumor imaging by means of ultrasound-mediated micro-to-nano conversion. Nanoscale. 2019;11:10178–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc. 2012;134:16464–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Xu Y, Liang X, Bhattarai P, Solar Y, Zhou Y, Wang S, Chen W, Ge H, Wang J, Cui L. Enhancing therapeutic efficacy of mixed most cancers phototherapy by ultrasound-mediated in situ conversion of near-infrared cyanine/porphyrin microbubbles into nanoparticles. Adv Funct Mater. 2017;27:1704096.


    Google Scholar
     

  • 119.

    Hou W, Lou JWH, Bu J, Chang E, Ding L, Valic M, Jeon HH, Charron DM, Coolens C, Cui D. A nanoemulsion with a porphyrin shell for most cancers theranostics. Angew Chem Int Ed. 2019;58:14974–8.

    CAS 

    Google Scholar
     

  • 120.

    Rajora MA, Ding L, Valic M, Jiang W, Overchuk M, Chen J, Zheng G. Tailor-made theranostic apolipoprotein E3 porphyrin-lipid nanoparticles goal glioblastoma. Chem Sci. 2017;8:5371–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Cheng MHY, Harmatys KM, Charron DM, Chen J, Zheng G. Secure J-aggregation of an aza-BODIPY-lipid in a liposome for optical most cancers imaging. Angew Chem Int Ed. 2019;131:13528–33.


    Google Scholar
     

  • 122.

    Arai Y, Park H, Park S, Kim D, Baek I, Jeong L, Kim BJ, Park Okay, Lee D, Lee SH. Bile acid-based dual-functional prodrug nanoparticles for bone regeneration by means of hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells. J Management Launch. 2020;328:596–607.

    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Previous Article

    50 Tech Tech Tuesday Suggestions and a Webinar

    Next Article

    Defending Rankings & Site visitors Throughout A Rebrand: website positioning Professional Ideas

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨