[ad_1]
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.
Burstein HJ, Krilov L, Aragon-Ching JB, Baxter NN, Chiorean EG, Chow WA, Groot JFD, Devine SM, DuBois SG, El-Deiry WS. Scientific most cancers advances 2017: annual report on progress in opposition to most cancers from the American Society of Scientific Oncology. J Clin Oncol. 2017;35:1341–67.
Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic most cancers remedy. Chem Rev. 2017;117:13566–638.
Qin S, Cheng Y, Lei Q, Zhang A, Zhang X. Combinational technique for high-performance most cancers chemotherapy. Biomaterials. 2018;171:178–97.
Vasan N, Baselga J, Hyman DM. A view on drug resistance in most cancers. Nature. 2019;575:299–309.
Luo C, Solar J, Solar B, He Z. Prodrug-based nanoparticulate drug supply methods for most cancers remedy. Tendencies Pharmacol Sci. 2014;35:556–66.
Meel RVD, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Sensible most cancers nanomedicine. Nat Nanotechnol. 2019;14:1007–17.
Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Latest developments in liposome expertise. Adv Drug Deliv Rev. 2020;156:4–22.
Cheng Z, Cheng Y, Chen Q, Li M, Wang J, Liu H, Li M, Ning Y, Yu Z, Wang Y. Self-assembly of pentapeptides into morphology-adaptable nanomedicines for enhanced combinatorial chemo-photodynamic remedy. Nano As we speak. 2020;33: 100878.
Tran S, DeGiovanni PJ, Piel B, Rai P. Most cancers nanomedicine: a evaluate of current success in drug supply. Clin Transl Med. 2017;6:1–21.
Mura S, Bui DT, Couvreur P, Nicolas J. Lipid prodrug nanocarriers in most cancers remedy. J Management Launch. 2015;208:25–41.
Lim SB, Banerjee A, Önyüksel H. Enchancment of drug security by means of lipid-based nanocarriers. J Management Launch. 2012;163:34–45.
Sengupta P, Basu S, Soni S, Pandey A, Roy B, Oh MS, Chin KT, Paraskar AS, Sarangi S, Connor Y. Ldl cholesterol-tethered platinum II-based supramolecular nanoparticle will increase antitumor efficacy and reduces nephrotoxicity. Proc Natl Acad Sci USA. 2012;109:11294–9.
Mei S, Hong L, Cai X, Xiao B, Zhang P, Shao L. Oxidative stress harm in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41–8.
Earl HM, Hiller L, Howard HC, Dunn JA, Younger J, Bowden SJ, McDermaid M, Waterhouse AK, Wilson G, Agrawal R. Addition of gemcitabine to paclitaxel, epirubicin, and cyclophosphamide adjuvant chemotherapy for girls with early-stage breast most cancers (tAnGo): remaining 10-year follow-up of an open-label, randomised, part 3 trial. Lancet Oncol. 2017;18:755–69.
Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev. 2017;118:65–77.
Albert A. Chemical points of selective toxicity. Nature. 1958;182:421–3.
Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu Okay. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic most cancers remedy. Angew Chem Int Ed. 2019;58:5920–4.
Solar B, Luo C, Zhang X, Guo M, Solar M, Yu H, Chen Q, Yang W, Wang M, Zuo S. Probing the affect of sulfur/selenium/carbon linkages on prodrug nanoassemblies for most cancers remedy. Nat Commun. 2019;10:3211.
Li S, Zou Q, Xing R, Govindaraju T, Fakhrullin R, Yan X. Peptide-modulated self-assembly as a flexible technique for tumor supramolecular nanotheranostics. Theranostics. 2019;9:3249–61.
Kim J, Narayana A, Patel S, Sahay G. Advances in intracellular supply by means of supramolecular self-assembly of oligonucleotides and peptides. Theranostics. 2019;9:3191–212.
Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J. Prodrugs: design and scientific purposes. Nat Rev Drug Discov. 2008;7:255–70.
Rautio J, Meanwell NA, Di L, Hageman MJ. The increasing function of prodrugs in modern drug design and improvement. Nat Rev Drug Discov. 2018;17:559–87.
Zhang X, Wang S, Cheng G, Yu P, Chang J, Chen X. Cascade drug-release technique for enhanced anticancer remedy. Matter. 2021;4:26–53.
Cheng G, Zong W, Guo H, Li F, Zhang X, Yu P, Ren F, Zhang X, Shi X, Gao F. Programmed size-changeable nanotheranostic brokers for enhanced imaging guided chemo/photodynamic mixture remedy and quick elimination. Adv Mater. 2021;33:2100398.
Wang S, Yu G, Wang Z, Jacobson O, Lin L, Yang W, Deng H, He Z, Liu Y, Chen Z. Enhanced antitumor efficacy by a cascade of reactive oxygen species era and drug launch. Angew Chem Int Ed. 2019;58:14758–63.
Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen Z, Chen X. Tumor-specific drug launch and reactive oxygen species era for most cancers chemo/chemodynamic mixture remedy. Adv Sci. 2019;6:1801986.
Wang S, Yu G, Zhou Z, Jacobson O, Tian R, Lin L, Zhang F, Wang J, Chen X. Hierarchical tumor microenvironment-responsive nanomedicine for programmed supply of chemotherapeutics. Adv Mater. 2018;30:1803926.
Arroyo-Crespo JJ, Deladriere C, Nebot VJ, Charbonnier D, Masiá E, Paul A, James C, Armiñán A, Vicent MJ. Anticancer exercise pushed by drug linker modification in a polyglutamic acid-based combination-drug conjugate[J]. Adv Funct Mater. 2018;28:1800931.
Pei P, Solar C, Tao W, Li J, Yang X, Wang J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for exact phototriggered locoregional chemotherapy. Biomaterials. 2019;188:74–82.
Sreekanth V, Bajaj A. Latest advances in engineering of lipid drug conjugates for most cancers remedy. ACS Biomater Sci Eng. 2019;5:4148–66.
Irby D, Du C, Li F. Lipid-drug conjugate for enhancing drug supply. Mol Pharm. 2017;14:1325–38.
Roy S, Brasky TM, Belury MA, Krishnan S, Cole RM, Marian C, Yee LD, Llanos AA, Freudenheim JL, Shields PG. Associations of erythrocyte ω-3 fatty acids with biomarkers of ω-3 fatty acids and irritation in breast tissue. Int J Most cancers. 2015;137:2934–46.
Solar B, Luo C, Cui W, Solar J, He Z. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for most cancers chemotherapy. J Management Launch. 2017;264:145–59.
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Rising insights on drug supply by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Management Launch. 2020;326:556–98.
Dahan A, Markovic M, Aponick A, Zimmermann EM, Ben-Shabat S. The prospects of lipidic prodrugs: an previous method with an rising future. Future Med Chem. 2019;11:2563–71.
Bui D, Nicolas J, Maksimenko A, Desmaële D, Couvreur P. Multifunctional squalene-based prodrug nanoparticles for focused most cancers remedy. Chem Commun. 2014;50:5336–8.
Emamzadeh M, Desmaële D, Couvreur P, Pasparakis G. Twin managed supply of squalenoyl-gemcitabine and paclitaxel utilizing thermo-responsive polymeric micelles for pancreatic most cancers. J Mater Chem B. 2018;6:2230–9.
Mougin J, Yesylevskyy SO, Bourgaux C, Chapron D, Michel JP, Dosio F, Stella B, Ramseyer C, Couvreur P. Stacking as a key property for creating nanoparticles with tunable form: the case of squalenoyl-doxorubicin. ACS Nano. 2019;13:12870–9.
Gobeaux F, Bizeau J, Samson F, Marichal L, Grillo I, Wien F, Yesylevsky SO, Ramseyer C, Rouquette M, Lepêtre-Mouelhi S. Albumin-driven disassembly of lipidic nanoparticles: the particular case of the squalene-adenosine nanodrug. Nanoscale. 2020;12:2793–809.
Bedikian AY, DeConti RC, Conry R, Agarwala S, Papadopoulos N, Kim KB, Ernstoff M. Section 3 research of docosahexaenoic acid-paclitaxel versus dacarbazine in sufferers with metastatic malignant melanoma. Ann Oncol. 2011;22:787–93.
Li D, Pant S, Ryan DP, Laheru D, Bahary N, Dragovich T, Hosein PJ, Rolfe L, Saif MW, LaValle J. A part II, open-label, multicenter research to judge the antitumor efficacy of CO-1.01 as second-line remedy for gemcitabine-refractory sufferers with stage IV pancreatic adenocarcinoma and adverse tumor hENT1 expression. Pancreatology. 2014;14:398–402.
Roboz GJ, Rosenblat T, Arellano M, Gobbi M, Altman JK, Montesinos P, O’Connell C, Solomon R, Pigneux A, Vey N. Worldwide randomized part III research of elacytarabine versus investigator alternative in sufferers with relapsed/refractory acute myeloid leukemia. J Clin Oncol. 2014;32:1919–26.
Luo C, Solar J, Solar B, Liu D, Miao L, Goodwin TJ, Huang L, He Z. Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small. 2016;12:6353–62.
Luo C, Solar J, Liu D, Solar B, Miao L, Musetti S, Li J, Han X, Du Y, Li L. Self-assembled redox dual-responsive prodrug-nanosystem shaped by single thioether-bridged paclitaxel-fatty acid conjugate for most cancers chemotherapy. Nano Lett. 2016;16:5401–8.
Wang H, Lu Z, Wang L, Guo T, Wu J, Wan J, Zhou L, Li H, Li Z, Jiang D. New era nanomedicines constructed from self-assembling small-molecule prodrugs alleviate most cancers drug toxicity. Most cancers Res. 2017;77:6963–74.
Lorscheider M, Tsapis N, Simón-Vázquez R, Guiblin N, Ghermani N, Reynaud F, Canioni R, Abreu S, Chaminade P, Fattal E. Nanoscale lipophilic prodrugs of dexamethasone with enhanced pharmacokinetics. Mol Pharm. 2019;16:2999–3010.
Fang T, Ye Z, Wu J, Wang H. Reprogramming axial ligands facilitates the self-assembly of a platinum(iv) prodrug: overcoming drug resistance and safer in vivo supply of cisplatin. Chem Commun. 2018;54:9167–70.
Xie H, Zhu H, Zhou Okay, Wan J, Zhang L, Yang Z, Zhou L, Chen X, Xu X, Zheng S. Goal-oriented supply of self-assembled immunosuppressant cocktails prolongs allogeneic orthotopic liver transplant survival. J Management Launch. 2020;328:237–50.
Wu L, Zhang F, Chen X, Wan J, Wang Y, Li T, Wang H. Self-assembled gemcitabine prodrug nanoparticles present enhanced efficacy in opposition to patient-derived pancreatic ductal adenocarcinoma. ACS Appl Mater Interfaces. 2019;12:3327–40.
Bala V, Rao S, Boyd BJ, Prestidge CA. Prodrug and nanomedicine approaches for the supply of the camptothecin analogue SN38. J Management Launch. 2013;172:48–61.
Wang H, Xie H, Wu J, Wei X, Xu X, Zheng S. Construction-based rational design of prodrugs to allow their mixture with polymeric nanoparticle supply platforms for enhanced antitumor efficacy. Angew Chem Int Ed. 2014;126:11716–21.
Wang H, Xie H, Wang J, Wu J, Ma X, Li L, Wei X, Ling Q, Track P, Zhou L. Self-assembling prodrugs by exact programming of molecular buildings that contribute distinct stability, pharmacokinetics, and antitumor efficacy. Adv Funct Mater. 2015;25:4956–65.
Li Y, Wang S, Huang Y, Chen Y, Wu W, Liu Y, Zhang J, Feng Y, Jiang X, Gou M. Mild-activated drug launch from prodrug nanoassemblies by construction destruction. Chem Commun. 2019;55:13128–31.
Han S, Hu L, Quach T, Simpson JS, Trevaskis NL, Porter CJH. Profiling the function of deacylation-reacylation within the lymphatic transport of a triglyceride-mimetic prodrug. Pharm Res. 2015;32:1830–44.
Han S, Quach T, Hu L, Wahab A, Charman WN, Stell VJ, Trevaskis NL, Simpson JS, Porter CJH. Focused supply of a mannequin immunomodulator to the lymphatic system: comparability of alkyl ester versus triglyceride mimetic lipid prodrug methods. J Management Launch. 2014;177:1–10.
Lee JB, Zgair A, Malec J, Kim TH, Kim MG, Ali J, Qin C, Feng W, Chiang M, Gao X. Lipophilic activated ester prodrug method for drug supply to the intestinal lymphatic system. J Management Launch. 2018;286:10–9.
Hu L, Quach T, Han S, Lim SF, Yadav P, Senyschyn D, Trevaskis NL, Simpson JS, Porter CJH. Glyceride-mimetic prodrugs incorporating self-immolative spacers promote lymphatic transport, keep away from first-pass metabolism, and improve oral bioavailability. Angew Chem Int Ed. 2016;128:13904–9.
Tian C, Guo J, Wang G, Solar B, Na Okay, Zhang X, Xu Z, Cheng M, He Z, Solar J. Environment friendly intestinal digestion and on website tumor-bioactivation are the 2 vital determinants for chylomicron-mediated lymph-targeting triglyceride-mimetic docetaxel oral prodrugs. Adv Sci. 2019;6:1901810.
Navacchia ML, Marchesi E, Perrone D. Bile acid conjugates with anticancer exercise: most up-to-date analysis. Molecules. 2021;26:25.
Deng F, Bae YH. Bile acid transporter-mediated oral drug supply. J Management Launch. 2020;327:100–16.
Sreekanth V, Bansal S, Motiani RK, Kundu S, Muppu SK, Majumdar TD, Panjamurthy Okay, Sengupta S, Bajaj A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast most cancers remedy. Bioconjug Chem. 2013;24:1468–84.
Zhang D, Li D, Shang L, He Z, Solar J. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption. Int J Pharm. 2016;511:161–9.
Mei KC, Liao YP, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang CH, Zhang X. Liposomal supply of mitoxantrone and a cholesteryl indoximod prodrug offers efficient chemo-immunotherapy in a number of stable tumors. ACS Nano. 2020;14:13343–66.
Radwan AA, Alanazi FK. Design and synthesis of latest cholesterol-conjugated 5-fluorouracil: a novel potential supply system for most cancers therapy. Molecules. 2014;19:13177–87.
Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Prospects and challenges of phospholipid-based prodrugs. Pharmaceutics. 2018;10:210.
Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Molecular modeling-guided design of phospholipid-based prodrugs. Int J Mol Sci. 2019;20:2210.
Yu J, Liu Y, Zhou S, Wang Y, Wang Y. Stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles for drug supply and theranostics. Int J Pharm. 2020;590: 119920.
Zaro JL. Lipid-based drug carriers for prodrugs to reinforce drug supply. AAPS J. 2015;17:83–92.
Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic brokers for ultrasound focused drug supply. Nanotheranostics. 2020;4:40–56.
Pan D, Schmieder AH, Wang Okay, Yang X, Senpan A, Cui G, Killgore Okay, Kim B, Allen JS, Zhang H. Anti-angiogenesis remedy within the Vx2 rabbit most cancers mannequin with a lipase-cleavable Sn 2 taxane phospholipid prodrug utilizing αvβ3-targeted theranostic nanoparticles. Theranostics. 2014;4:565–78.
Wang H, Liu X, Wang Y, Chen Y, Jin Q, Ji J. Doxorubicin conjugated phospholipid prodrugs as good nanomedicine platforms for most cancers remedy. J Mater Chem B. 2015;3:3297–305.
Huynh E, Zheng G. Porphysome nanotechnology: a paradigm shift in lipid-based supramolecular buildings. Nano As we speak. 2014;9:212–22.
Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G. Porphysome nanovesicles generated by porphyrin bilayers to be used as multimodal biophotonic distinction brokers. Nat Mater. 2011;10:324–32.
Huynh E, Leung BY, Helfield BL, Shakiba M, Gandier JA, Jin CS, Grasp ER, Wilson BC, Goertz DE, Zheng G. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol. 2015;10:325–32.
Overchuk M, Zheng M, Rajora MA, Charron DM, Chen J, Zheng G. Tailoring porphyrin conjugation for nanoassembly-driven phototheranostic properties. ACS Nano. 2019;13:4560–71.
Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty years of most cancers nanomedicine: success, frustration, and hope. Cancers. 2019;11:1855.
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Most cancers nanomedicine: progress, challenges and alternatives. Nat Rev Most cancers. 2017;17:20–37.
Gadekar V, Borade Y, Kannaujia S. Nanomedicines accessible out there for scientific interventions. J Management Launch. 2020;330:372–97.
Jing F, Guo Q, Xu W, Qu H, Sui Z. Docetaxel prodrug self-assembled nanosystem: synthesis, formulation and cytotoxicity. Bioorg Med Chem Lett. 2018;28:826–30.
Zhong T, Yao X, Zhang S, Guo Y, Duan XC, Ren W, Huang Dan, Yin YF, Zhang X. A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with greater drug loading and carrier-free attribute. Sci Rep. 2016;6:36614.
Sauraj Kumar V, Kumar B, Deeba F, Bano S, Kulshreshtha A, Gopinath P, Negi YS. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon most cancers remedy. Int J Biol Macromol. 2019;128:204–13.
Dormont F, Brusini R, Cailleau C, Reynaud F, Peramo A, Gendron A, Mougin J, Gaudin F, Varna M, Couvreur P. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled irritation in rodents. Sci Adv. 2020;6:eaaz5466.
Yang X, Chen X, Wang Y, Xu G, Yu L, Ding J. Sustained launch of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy. Chem Eng J. 2020;396:125320.
Liang C, Ye W, Zhu C, Na R, Cheng Y, Cui H, Liu D, Yang Z, Zhou S. Synthesis of doxorubicin α-linolenic acid conjugate and analysis of its antitumor exercise. Mol Pharm. 2014;11:1378–90.
Barry E, Alvarez JA, Scully RE, Miller TL, Lipshultz SE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and administration. Knowledgeable Opin Pharmacother. 2007;8:1039–58.
Tahir N, Madni A, Correia A, Rehman M, Balasubramanian V, Khan MM, Santos HA. Lipid-polymer hybrid nanoparticles for managed supply of hydrophilic and lipophilic doxorubicin for breast most cancers remedy. Int J Nanomedicine. 2019;14:4961.
Huan M, Zhou S, Teng Z, Zhang B, Liu X, Wang J, Mei Q. Conjugation with α-linolenic acid improves most cancers cell uptake and cytotoxicity of doxorubicin. Bioorg Med Chem Lett. 2009;19:2579–84.
Huan M, Cui H, Teng Z, Zhang B, Wang J, Liu X, Xia H, Zhou S, Mei Q. In vivo anti-tumor exercise of a brand new doxorubicin conjugate by way of α-linolenic acid. Biosci Biotechnol Biochem. 2012;76:1577–9.
Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour-targeting the lymphatic system to advertise drug publicity and exercise. Nat Rev Drug Discov. 2015;14:781–803.
Trevaskis NL, Charman WN, Porter CJH. Lipid-based supply methods and intestinal lymphatic drug transport: a mechanistic replace. Adv Drug Deliv Rev. 2008;60:702–16.
Dave VS, Gupta D, Yu M, Nguyen P, Gupta SV. Present and evolving approaches for enhancing the oral permeability of BCS Class III or analogous molecules. Drug Dev Ind Pharm. 2017;43:177–89.
Kalepu S, Nekkanti V. Insoluble drug supply methods: evaluate of current advances and enterprise prospects. Acta Pharm Sin B. 2015;5:442–53.
Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Lipidic prodrug method for improved oral drug supply and remedy. Med Res Rev. 2019;39:579–607.
Han S, Quach T, Hu L, Lim SF, Gracia G, Trevaskis NL, Simpson JS, Porter CJH. The affect of conjugation place and linker chemistry on the lymphatic transport of a collection of glyceride and phospholipid mimetic prodrugs. J Pharm Sci. 2021;110:489–99.
Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter Okay, Stoter G, Sparreboom A. Scientific pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Most cancers Res. 2001;7:2182–94.
Bala V, Rao S, Li P, Wang S, Prestidge CA. Lipophilic prodrugs of SN38: synthesis and in vitro characterization towards oral chemotherapy. Mol Pharm. 2016;13:287–94.
Bala V, Rao S, Bateman E, Keefe D, Wang S, Prestidge CA. Enabling oral SN38-based chemotherapy with a mixed lipophilic prodrug and self-microemulsifying drug supply system. Mol Pharm. 2016;13:3518–25.
Thanki Okay, Prajapati R, Sangamwar AT, Jain S. Lengthy chain fatty acid conjugation remarkably decreases the aggregation induced toxicity of Amphotericin B. Int J Pharm. 2018;544:1–13.
Thanki Okay, Date T, Jain S. Improved oral bioavailability and gastrointestinal stability of amphotericin B by means of fatty acid conjugation method. Mol Pharm. 2019;16:4519–29.
Bradley MO, Webb NL, Anthony FH, Devanesan P, Witman PA, Hemamalini S, Chander MC, Baker SD, He L, Horwitz SB, Swindell CS. Tumor focusing on by covalent conjugation of a pure fatty acid to paclitaxel. Clin Most cancers Res. 2001;7:3229–38.
Solar B, Chen Y, Yu H, Wang C, Zhang X, Zhao H, Chen Q, He Z, Luo C, Solar J. Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic remedy. Acta Biomater. 2019;92:219–28.
Huang L, Wan J, Wu H, Chen X, Bian Q, Shi L, Jiang X, Yuan A, Gao J, Wang H. Quantitative self-assembly of photoactivatable small molecular prodrug cocktails for secure and potent most cancers chemo-photodynamic remedy. Nano As we speak. 2021;36:101030.
Shen F, Feng L, Zhu Y, Tao D, Xu J, Peng R, Liu Z. Oxaliplatin-/NLG919 prodrugs-constructed liposomes for efficient chemo-immunotherapy of colorectal most cancers. Biomaterials. 2020;255:120190.
Han S, Hu L, Gracia Quach T, Simpson JS, Edwards GA, Trevaskis NL, Porter CJ. Lymphatic transport and lymphocyte focusing on of a triglyceride mimetic prodrug is enhanced in a big animal mannequin: research in greyhound canine. Mol Pharm. 2016;13:3351–61.
Han S, Hu L, Quach T, Simpson JS, Trevaskis NL, Porter CJH. Constitutive triglyceride turnover into the mesenteric lymph is unable to help environment friendly lymphatic transport of a biomimetic triglyceride prodrug. J Pharm Sci. 2016;105:786–96.
Kochappan R, Cao E, Han S, Hu L, Quach T, Senyschyn D, Ferreira VI, Lee G, Leong N, Sharma G. Focused supply of mycophenolic acid to the mesenteric lymph node utilizing a triglyceride mimetic prodrug method enhances gut-specific immunomodulation in mice. J Management Launch. 2021;332:636–51.
Mishra R, Mishra S. Updates in bile acid-bioactive molecule conjugates and their purposes. Steroids. 2020;159:108639.
Khatun Z, Nurunnabi M, Reeck GR, Cho KJ, Lee YK. Oral supply of taurocholic acid linked heparin-docetaxel conjugates for most cancers remedy. J Management Launch. 2013;170:74–82.
Khatun Z, Nurunnabi M, Cho KJ, Lee YK. Imaging of the GI tract by QDs loaded heparin-deoxycholic acid (DOCA) nanoparticles. Carbohydr Polym. 2012;90:1461–8.
Cui W, Zhang S, Zhao H, Luo C, Solar B, Li Z, Solar M, Ye Q, Solar J, He Z. Formulating a single thioether-bridged oleate prodrug right into a self-nanoemulsifying drug supply system to facilitate oral absorption of docetaxel. Biomater Sci. 2019;7:1117–31.
Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: price versus good thing about including focusing on and imaging capabilities. Science. 2012;338:903–10.
Huynh E, Lovell JF, Fobel R, Zheng G. Optically managed pore formation in self-sealing large porphyrin vesicles. Small. 2014;10:1184–93.
Charron DM, Yousefalizadeh G, Buzzá HH, Rajora MA, Chen J, Stamplecoskie KG, Zheng G. Photophysics of J-aggregating porphyrin-lipid photosensitizers in liposomes: affect of lipid saturation. Langmuir. 2020;36:5385–93.
MacDonald TD, Liu TW, Zheng G. An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew Chem Int Ed. 2014;126:7076–9.
Chen M, Liang X, Dai Z. Manganese (iii)-chelated porphyrin microbubbles for enhanced ultrasound/MR bimodal tumor imaging by means of ultrasound-mediated micro-to-nano conversion. Nanoscale. 2019;11:10178–82.
Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc. 2012;134:16464–7.
Xu Y, Liang X, Bhattarai P, Solar Y, Zhou Y, Wang S, Chen W, Ge H, Wang J, Cui L. Enhancing therapeutic efficacy of mixed most cancers phototherapy by ultrasound-mediated in situ conversion of near-infrared cyanine/porphyrin microbubbles into nanoparticles. Adv Funct Mater. 2017;27:1704096.
Hou W, Lou JWH, Bu J, Chang E, Ding L, Valic M, Jeon HH, Charron DM, Coolens C, Cui D. A nanoemulsion with a porphyrin shell for most cancers theranostics. Angew Chem Int Ed. 2019;58:14974–8.
Rajora MA, Ding L, Valic M, Jiang W, Overchuk M, Chen J, Zheng G. Tailor-made theranostic apolipoprotein E3 porphyrin-lipid nanoparticles goal glioblastoma. Chem Sci. 2017;8:5371–84.
Cheng MHY, Harmatys KM, Charron DM, Chen J, Zheng G. Secure J-aggregation of an aza-BODIPY-lipid in a liposome for optical most cancers imaging. Angew Chem Int Ed. 2019;131:13528–33.
Arai Y, Park H, Park S, Kim D, Baek I, Jeong L, Kim BJ, Park Okay, Lee D, Lee SH. Bile acid-based dual-functional prodrug nanoparticles for bone regeneration by means of hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells. J Management Launch. 2020;328:596–607.
[ad_2]