Excitons in semiconductor moiré superlattices

Excitons in semiconductor moiré superlattices

[ad_1]

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS 

    Google Scholar
     

  • Kerelsky, A. et al. Maximized electron interactions on the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    CAS 

    Google Scholar
     

  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    CAS 

    Google Scholar
     

  • Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).

    CAS 

    Google Scholar
     

  • Wang, L. et al. Correlated digital phases in twisted bilayer transition metallic dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    CAS 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    CAS 

    Google Scholar
     

  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    CAS 

    Google Scholar
     

  • Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    CAS 

    Google Scholar
     

  • Chu, Z. et al. Nanoscale conductivity imaging of correlated digital states in WSe2/WS2 moiré superlattices. Phys. Rev. Lett. 125, 186803 (2020).

    CAS 

    Google Scholar
     

  • Naik, M. H., Kundu, S., Maity, I. & Jain, M. Origin and evolution of ultraflat bands in twisted bilayer transition metallic dichalcogenides: realization of triangular quantum dots. Phys. Rev. B 102, 075413 (2020).

    CAS 

    Google Scholar
     

  • Zhao, X.-J., Yang, Y., Zhang, D.-B. & Wei, S.-H. Formation of Bloch flat bands in polar twisted bilayers with out magic angles. Phys. Rev. Lett. 124, 086401 (2020).

    CAS 

    Google Scholar
     

  • Splendiani, A. et al. Rising photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    CAS 

    Google Scholar
     

  • He, Okay. et al. Tightly certain excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    CAS 

    Google Scholar
     

  • Chernikov, A. et al. Exciton binding vitality and nonhydrogenic Rydberg collection in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    CAS 

    Google Scholar
     

  • Tartakovskii, A. Excitons in 2D heterostructures. Nat. Rev. Phys. 2, 8–9 (2020).


    Google Scholar
     

  • Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metallic dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS 

    Google Scholar
     

  • Tran, Okay., Choi, J. & Singh, A. Moiré and past in transition metallic dichalcogenide twisted bilayers. 2D Mater. 8, 022002 (2021).


    Google Scholar
     

  • Yu, Y. et al. Equally environment friendly interlayer exciton rest and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).

    CAS 

    Google Scholar
     

  • Rivera, P. et al. Statement of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS 

    Google Scholar
     

  • Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).

    CAS 

    Google Scholar
     

  • Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).


    Google Scholar
     

  • Guo, Y. & Robertson, J. Band engineering in transition metallic dichalcogenides: stacked versus lateral heterostructures. Appl. Phys. Lett. 108, 233104 (2016).


    Google Scholar
     

  • Zhang, C. et al. Systematic research of digital construction and band alignment of monolayer transition metallic dichalcogenides in van der Waals heterostructures. 2D Mater. 4, 015026 (2016).


    Google Scholar
     

  • Ceballos, F., Bellus, M. Z., Chiu, H. & Zhao, H. Ultrafast cost separation and oblique exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014).

    CAS 

    Google Scholar
     

  • Hong, X. et al. Ultrafast cost switch in atomically skinny MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    CAS 

    Google Scholar
     

  • Zheng, Q. et al. Phonon-assisted ultrafast cost switch at van der Waals heterostructure interface. Nano Lett. 17, 6435–6442 (2017).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Ultrafast interlayer electron switch in incommensurate transition metallic dichalcogenide homobilayers. Nano Lett. 17, 6661–6666 (2017).

    CAS 

    Google Scholar
     

  • Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS 

    Google Scholar
     

  • Miller, B. et al. Lengthy-lived direct and oblique interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

    CAS 

    Google Scholar
     

  • Nayak, P. Okay. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041–4050 (2017).

    CAS 

    Google Scholar
     

  • Jin, C. et al. On optical dipole second and radiative recombination lifetime of excitons in WSe2. Adv. Funct. Mater. 27, 1601741 (2017).


    Google Scholar
     

  • Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    CAS 

    Google Scholar
     

  • Leisgang, N. et al. Large Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).

    CAS 

    Google Scholar
     

  • Förg, M. et al. Cavity-control of interlayer excitons in van der Waals heterostructures. Nat. Commun. 10, 3697 (2019).


    Google Scholar
     

  • Alexeev, E. M. et al. Imaging of interlayer coupling in van der Waals heterostructures utilizing a bright-field optical microscope. Nano Lett. 17, 5342–5349 (2017).

    CAS 

    Google Scholar
     

  • Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).

    CAS 

    Google Scholar
     

  • Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark impact. Nat. Nanotechnol. 16, 52–57 (2021).

    CAS 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS 

    Google Scholar
     

  • Zhang, L. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 11, 5888 (2020).

    CAS 

    Google Scholar
     

  • Brem, S. et al. Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale 12, 11088–11094 (2020).

    CAS 

    Google Scholar
     

  • Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021).

    CAS 

    Google Scholar
     

  • Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).

    CAS 

    Google Scholar
     

  • Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metallic dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    CAS 

    Google Scholar
     

  • Sung, J. et al. Damaged mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).

    CAS 

    Google Scholar
     

  • Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).

    CAS 

    Google Scholar
     

  • Quan, J. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater. 20, 1100–1105 (2021).

    CAS 

    Google Scholar
     

  • Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled synthetic lattices. Sci. Adv. 3, e1701696 (2017).


    Google Scholar
     

  • Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    CAS 

    Google Scholar
     

  • Wu, F., Lovorn, T. & MacDonald, A. H. Principle of optical absorption by interlayer excitons in transition metallic dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018).

    CAS 

    Google Scholar
     

  • Shabani, S. et al. Deep moiré potentials in twisted transition metallic dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

    CAS 

    Google Scholar
     

  • Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D digital superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).


    Google Scholar
     

  • Ding, Y. et al. First rules research of structural, vibrational and digital properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. Physica B 406, 2254–2260 (2011).

    CAS 

    Google Scholar
     

  • He, J., Hummer, Okay. & Franchini, C. Stacking results on the digital and optical properties of bilayer transition metallic dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89, 075409 (2014).


    Google Scholar
     

  • Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking domains and dislocation networks in marginally twisted bilayers of transition metallic dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020).

    CAS 

    Google Scholar
     

  • Zeller, P. & Günther, S. What are the doable moiré patterns of graphene on hexagonally packed surfaces? Common resolution for hexagonal coincidence lattices, derived by a geometrical development. New J. Phys. 16, 083028 (2014).


    Google Scholar
     

  • Zeller, P., Ma, X. & Günther, S. Indexing moiré patterns of metal-supported graphene and associated programs: methods and pitfalls. New J. Phys. 19, 013015 (2017).


    Google Scholar
     

  • Wang, J. et al. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Phys. Rev. Lett. 126, 106804 (2021).

    CAS 

    Google Scholar
     

  • Kunstmann, J. et al. Momentum-space oblique interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018).

    CAS 

    Google Scholar
     

  • Hsu, W.-T. et al. Damaging round polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 9, 1356 (2018).


    Google Scholar
     

  • Bellus, M. Z., Ceballos, F., Chiu, H.-Y. & Zhao, H. Tightly certain trions in transition metallic dichalcogenide heterostructures. ACS Nano 9, 6459–6464 (2015).

    CAS 

    Google Scholar
     

  • Jiang, C. et al. Microsecond dark-exciton valley polarization reminiscence in two-dimensional heterostructures. Nat. Commun. 9, 753 (2018).


    Google Scholar
     

  • Zhu, X. et al. Cost switch excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015).

    CAS 

    Google Scholar
     

  • Nagler, P. et al. Large magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 8, 1551 (2017).


    Google Scholar
     

  • Kim, J. et al. Statement of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).


    Google Scholar
     

  • Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS 

    Google Scholar
     

  • Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metallic dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).

    CAS 

    Google Scholar
     

  • Yu, H., Wang, Y., Tong, Q., Xu, X. & Yao, W. Anomalous mild cones and valley optical choice guidelines of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).


    Google Scholar
     

  • Guo, H., Zhang, X. & Lu, G. Shedding mild on moiré excitons: a first-principles perspective. Sci. Adv. 6, eabc5638 (2020).

    CAS 

    Google Scholar
     

  • Torun, E., Miranda, H. P. C., Molina-Sánchez, A. & Wirtz, L. Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers. Phys. Rev. B 97, 245427 (2018).

    CAS 

    Google Scholar
     

  • Zhang, L. et al. Extremely valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402(R) (2019).


    Google Scholar
     

  • Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical choice guidelines in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).


    Google Scholar
     

  • Seyler, Okay. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS 

    Google Scholar
     

  • Rohlfing, M. & Louie, S. G. Electron–gap excitations in semiconductors and insulators. Phys. Rev. Lett. 81, 2312–2315 (1998).

    CAS 

    Google Scholar
     

  • Pan, Y. et al. Quantum-confined digital states arising from the moiré sample of MoS2–WSe2 heterobilayers. Nano Lett. 18, 1849–1855 (2018).

    CAS 

    Google Scholar
     

  • Waters, D. et al. Flat bands and mechanical deformation results within the moiré superlattice of MoS2-WSe2 heterobilayers. ACS Nano 14, 7564–7573 (2020).

    CAS 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard mannequin physics in transition metallic dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Flat bands in twisted bilayer transition metallic dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).

    CAS 

    Google Scholar
     

  • Li, E. et al. Lattice reconstruction induced a number of ultra-flat bands in twisted bilayer WSe2. Nat. Commun. 12, 5601 (2021).

    CAS 

    Google Scholar
     

  • Tran, Okay. et al. Proof for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS 

    Google Scholar
     

  • Jin, C. et al. Statement of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    CAS 

    Google Scholar
     

  • Zhang, N. et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 18, 7651–7657 (2018).

    CAS 

    Google Scholar
     

  • Bayer, M., Stern, O., Hawrylak, P., Fafard, S. & Forchel, A. Hidden symmetries within the vitality ranges of excitonic ‘synthetic atoms’. Nature 405, 923–926 (2000).

    CAS 

    Google Scholar
     

  • Baek, H. et al. Extremely energy-tunable quantum mild from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    CAS 

    Google Scholar
     

  • Kremser, M. et al. Discrete interactions between a couple of interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).

    CAS 

    Google Scholar
     

  • Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metallic dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

    CAS 

    Google Scholar
     

  • Calman, E. V. et al. Oblique excitons and trions in MoSe2/WSe2 van der Waals heterostructures. Nano Lett. 20, 1869–1875 (2020).

    CAS 

    Google Scholar
     

  • Wang, T. et al. Large valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 20, 694–700 (2020).

    CAS 

    Google Scholar
     

  • Förg, M. et al. Moiré excitons in MoSe2-WSe2 heterobilayers and heterotrilayers. Nat. Commun. 12, 1656 (2021).


    Google Scholar
     

  • Shinokita, Okay., Miyauchi, Y., Watanabe, Okay., Taniguchi, T. & Matsuda, Okay. Moiré exciton dynamics and moiré exciton-phonon interplay in a WSe2/MoSe2 heterobilayer. Preprint at https://arxiv.org/abs/2012.08720 (2020)

  • Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Wonderful construction splitting within the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

    CAS 

    Google Scholar
     

  • Toth, M. & Aharonovich, I. Single photon sources in atomically skinny supplies. Annu. Rev. Phys. Chem. 70, 123–142 (2019).

    CAS 

    Google Scholar
     

  • Ren, S., Tan, Q. & Zhang, J. Evaluation on the quantum emitters in two-dimensional supplies. J. Semicond. 40, 071903 (2019).

    CAS 

    Google Scholar
     

  • Jauregui, L. A. et al. Electrical management of interlayer exciton dynamics in atomically skinny heterostructures. Science 366, 870–875 (2019).

    CAS 

    Google Scholar
     

  • Choi, J. et al. Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett. 126, 047401 (2021).

    CAS 

    Google Scholar
     

  • Deilmann, T., Rohlfing, M. & Wurstbauer, U. Gentle–matter interplay in van der Waals hetero-structures. J. Condens. Matter Phys. 32, 333002 (2020).

    CAS 

    Google Scholar
     

  • Madéo, J. et al. Immediately visualizing the momentum-forbidden darkish excitons and their dynamics in atomically skinny semiconductors. Science 370, 1199–1204 (2020).


    Google Scholar
     

  • Wallauer, R. et al. Momentum-resolved remark of exciton formation dynamics in monolayer WS2. Nano Lett. 21, 5867–5873 (2021).

    CAS 

    Google Scholar
     

  • Man, M. Okay. L. et al. Experimental measurement of the intrinsic excitonic wave operate. Sci. Adv. 7, eabg0192 (2021).

    CAS 

    Google Scholar
     

  • Unuchek, D. et al. Room-temperature electrical management of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    CAS 

    Google Scholar
     

  • Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 (2019).

    CAS 

    Google Scholar
     

  • Brem, S., Linderälv, C., Erhart, P. & Malic, E. Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett. 20, 8534–8540 (2020).

    CAS 

    Google Scholar
     

  • Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).

    CAS 

    Google Scholar
     

  • Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    CAS 

    Google Scholar
     

  • Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: cost switch in transition metallic dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).

    CAS 

    Google Scholar
     

  • Kumar, A., Xie, M. & MacDonald, A. H. Lattice collective modes from a continuum mannequin of magic-angle twisted bilayer graphene. Phys. Rev. B 104, 035119 (2021).

    CAS 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS 

    Google Scholar
     

  • Andrei, E. Y. et al. The marvels of moiré supplies. Nat. Rev. Mater. 6, 201–206 (2021).

    CAS 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Bilayer Wigner crystals in a transition metallic dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    CAS 

    Google Scholar
     

  • Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).


    Google Scholar
     

  • Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).

    CAS 

    Google Scholar
     

  • Raja, A. et al. Dielectric dysfunction in two-dimensional supplies. Nat. Nanotechnol. 14, 832–837 (2019).

    CAS 

    Google Scholar
     

  • Hsu, W.-T. et al. Dielectric impression on exciton binding vitality and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 6, 025028 (2019).

    CAS 

    Google Scholar
     

  • Li, T. et al. Cost-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).

    CAS 

    Google Scholar
     

  • Liu, E. et al. Excitonic and valley-polarization signatures of fractional correlated digital phases in a WSe2/WS2 moiré superlattice. Phys. Rev. Lett. 127, 037402 (2021).

    CAS 

    Google Scholar
     

  • Woggon, U. Optical Properties of Semiconductor Quantum Dots Vol. 136 (Springer, 1997)

  • Peyghambarian, N., Koch, S. W. & Mysyrowicz, A. Introduction to Semiconductor Optics (Prentice Corridor, 1993)

  • Haug, H. & Koch, S. W. Quantum Principle of the Optical and Digital Properties of Semiconductors fifth edn (World Scientific, 2009)

  • Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

    CAS 

    Google Scholar
     

  • McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    CAS 

    Google Scholar
     

  • Yoo, H. et al. Atomic and digital reconstruction on the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    CAS 

    Google Scholar
     

  • Li, H. et al. Imaging generalized Wigner crystal states in a WSe2/WS2 moiré superlattice. Preprint at https://arxiv.org/abs/2106.10599 (2021)

  • Halbertal, D. et al. Moiré metrology of vitality landscapes in van der Waals heterostructures. Nat. Commun. 12, 242 (2021).

    CAS 

    Google Scholar
     

  • Padhi, B., Chitra, R. & Phillips, P. W. Generalized Wigner crystallization in moiré supplies. Phys. Rev. B 103, 125146 (2021).

    CAS 

    Google Scholar
     

  • Zhang, Y., Liu, T. & Fu, L. Digital constructions, cost switch, and cost order in twisted transition metallic dichalcogenide bilayers. Phys. Rev. B 103, 155142 (2021).

    CAS 

    Google Scholar
     

  • Morales-Durán, N., MacDonald, A. H. & Potasz, P. Steel-insulator transition in transition metallic dichalcogenide heterobilayer moiré superlattices. Phys. Rev. B 103, L241110 (2021).


    Google Scholar
     

  • Pan, H. & Das Sarma, S. Interplay-driven filling-induced metal-insulator transitions in 2D moiré lattices. Phys. Rev. Lett. 127, 096802 (2021).

    CAS 

    Google Scholar
     

  • Zeng, Y. & MacDonald, A. H. Electrically managed two-dimensional electron-hole fluids. Phys. Rev. B 102, 085154 (2020).

    CAS 

    Google Scholar
     

  • Pan, H., Wu, F. & Das Sarma, S. Quantum part diagram of a Moiré-Hubbard mannequin. Phys. Rev. B 102, 201104 (2020).

    CAS 

    Google Scholar
     

  • Lian, B., Liu, Z., Zhang, Y. & Wang, J. Flat Chern band from twisted bilayer MnBi2Te4. Phys. Rev. Lett. 124, 126402 (2020).

    CAS 

    Google Scholar
     

  • Enaldiev, V. V., Ferreira, F., Magorrian, S. J. & Fal’Ko, V. I. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater. 8, 025030 (2021).

    CAS 

    Google Scholar
     

  • Yasuda, Okay., Wang, X., Watanabe, Okay., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    CAS 

    Google Scholar
     

  • Xiao, F., Chen, Okay. & Tong, Q. Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Res. 3, 013027 (2021).

    CAS 

    Google Scholar
     

  • Tong, Q., Chen, M., Xiao, F., Yu, H. & Yao, W. Interferences of electrostatic moiré potentials and bichromatic superlattices of electrons and excitons in transition metallic dichalcogenides. 2D Mater. 8, 025007 (2020).


    Google Scholar
     

  • Anđelković, M., Milovanović, S. P., Covaci, L. & Peeters, F. M. Double moiré with a twist: supermoiré in encapsulated graphene. Nano Lett. 20, 979–988 (2020).


    Google Scholar
     

  • Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).


    Google Scholar
     

  • Jin, C. et al. Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys. 15, 1140–1144 (2019).

    CAS 

    Google Scholar
     

  • [ad_2]

    Previous Article

    A Information To Native search engine marketing For Massive Enterprises & Franchises

    Next Article

    Benagil Caves (Algarve) | Superb Drone Pictures

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨