[ad_1]
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Kerelsky, A. et al. Maximized electron interactions on the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).
Wang, L. et al. Correlated digital phases in twisted bilayer transition metallic dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).
Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).
Chu, Z. et al. Nanoscale conductivity imaging of correlated digital states in WSe2/WS2 moiré superlattices. Phys. Rev. Lett. 125, 186803 (2020).
Naik, M. H., Kundu, S., Maity, I. & Jain, M. Origin and evolution of ultraflat bands in twisted bilayer transition metallic dichalcogenides: realization of triangular quantum dots. Phys. Rev. B 102, 075413 (2020).
Zhao, X.-J., Yang, Y., Zhang, D.-B. & Wei, S.-H. Formation of Bloch flat bands in polar twisted bilayers with out magic angles. Phys. Rev. Lett. 124, 086401 (2020).
Splendiani, A. et al. Rising photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).
He, Okay. et al. Tightly certain excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).
Chernikov, A. et al. Exciton binding vitality and nonhydrogenic Rydberg collection in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
Tartakovskii, A. Excitons in 2D heterostructures. Nat. Rev. Phys. 2, 8–9 (2020).
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metallic dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
Tran, Okay., Choi, J. & Singh, A. Moiré and past in transition metallic dichalcogenide twisted bilayers. 2D Mater. 8, 022002 (2021).
Yu, Y. et al. Equally environment friendly interlayer exciton rest and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).
Rivera, P. et al. Statement of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).
Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).
Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).
Guo, Y. & Robertson, J. Band engineering in transition metallic dichalcogenides: stacked versus lateral heterostructures. Appl. Phys. Lett. 108, 233104 (2016).
Zhang, C. et al. Systematic research of digital construction and band alignment of monolayer transition metallic dichalcogenides in van der Waals heterostructures. 2D Mater. 4, 015026 (2016).
Ceballos, F., Bellus, M. Z., Chiu, H. & Zhao, H. Ultrafast cost separation and oblique exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014).
Hong, X. et al. Ultrafast cost switch in atomically skinny MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).
Zheng, Q. et al. Phonon-assisted ultrafast cost switch at van der Waals heterostructure interface. Nano Lett. 17, 6435–6442 (2017).
Li, Y. et al. Ultrafast interlayer electron switch in incommensurate transition metallic dichalcogenide homobilayers. Nano Lett. 17, 6661–6666 (2017).
Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).
Miller, B. et al. Lengthy-lived direct and oblique interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).
Nayak, P. Okay. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041–4050 (2017).
Jin, C. et al. On optical dipole second and radiative recombination lifetime of excitons in WSe2. Adv. Funct. Mater. 27, 1601741 (2017).
Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).
Leisgang, N. et al. Large Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).
Förg, M. et al. Cavity-control of interlayer excitons in van der Waals heterostructures. Nat. Commun. 10, 3697 (2019).
Alexeev, E. M. et al. Imaging of interlayer coupling in van der Waals heterostructures utilizing a bright-field optical microscope. Nano Lett. 17, 5342–5349 (2017).
Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).
Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark impact. Nat. Nanotechnol. 16, 52–57 (2021).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Zhang, L. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 11, 5888 (2020).
Brem, S. et al. Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale 12, 11088–11094 (2020).
Andersen, T. I. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 20, 480–487 (2021).
Scuri, G. et al. Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett. 124, 217403 (2020).
Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metallic dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).
Sung, J. et al. Damaged mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).
Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).
Quan, J. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater. 20, 1100–1105 (2021).
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled synthetic lattices. Sci. Adv. 3, e1701696 (2017).
Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).
Wu, F., Lovorn, T. & MacDonald, A. H. Principle of optical absorption by interlayer excitons in transition metallic dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018).
Shabani, S. et al. Deep moiré potentials in twisted transition metallic dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).
Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D digital superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).
Ding, Y. et al. First rules research of structural, vibrational and digital properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. Physica B 406, 2254–2260 (2011).
He, J., Hummer, Okay. & Franchini, C. Stacking results on the digital and optical properties of bilayer transition metallic dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89, 075409 (2014).
Enaldiev, V. V., Zólyomi, V., Yelgel, C., Magorrian, S. J. & Fal’ko, V. I. Stacking domains and dislocation networks in marginally twisted bilayers of transition metallic dichalcogenides. Phys. Rev. Lett. 124, 206101 (2020).
Zeller, P. & Günther, S. What are the doable moiré patterns of graphene on hexagonally packed surfaces? Common resolution for hexagonal coincidence lattices, derived by a geometrical development. New J. Phys. 16, 083028 (2014).
Zeller, P., Ma, X. & Günther, S. Indexing moiré patterns of metal-supported graphene and associated programs: methods and pitfalls. New J. Phys. 19, 013015 (2017).
Wang, J. et al. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Phys. Rev. Lett. 126, 106804 (2021).
Kunstmann, J. et al. Momentum-space oblique interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018).
Hsu, W.-T. et al. Damaging round polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 9, 1356 (2018).
Bellus, M. Z., Ceballos, F., Chiu, H.-Y. & Zhao, H. Tightly certain trions in transition metallic dichalcogenide heterostructures. ACS Nano 9, 6459–6464 (2015).
Jiang, C. et al. Microsecond dark-exciton valley polarization reminiscence in two-dimensional heterostructures. Nat. Commun. 9, 753 (2018).
Zhu, X. et al. Cost switch excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015).
Nagler, P. et al. Large magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 8, 1551 (2017).
Kim, J. et al. Statement of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).
Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).
Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metallic dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).
Yu, H., Wang, Y., Tong, Q., Xu, X. & Yao, W. Anomalous mild cones and valley optical choice guidelines of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).
Guo, H., Zhang, X. & Lu, G. Shedding mild on moiré excitons: a first-principles perspective. Sci. Adv. 6, eabc5638 (2020).
Torun, E., Miranda, H. P. C., Molina-Sánchez, A. & Wirtz, L. Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers. Phys. Rev. B 97, 245427 (2018).
Zhang, L. et al. Extremely valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402(R) (2019).
Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical choice guidelines in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).
Seyler, Okay. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Rohlfing, M. & Louie, S. G. Electron–gap excitations in semiconductors and insulators. Phys. Rev. Lett. 81, 2312–2315 (1998).
Pan, Y. et al. Quantum-confined digital states arising from the moiré sample of MoS2–WSe2 heterobilayers. Nano Lett. 18, 1849–1855 (2018).
Waters, D. et al. Flat bands and mechanical deformation results within the moiré superlattice of MoS2-WSe2 heterobilayers. ACS Nano 14, 7564–7573 (2020).
Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard mannequin physics in transition metallic dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).
Zhang, Z. et al. Flat bands in twisted bilayer transition metallic dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).
Li, E. et al. Lattice reconstruction induced a number of ultra-flat bands in twisted bilayer WSe2. Nat. Commun. 12, 5601 (2021).
Tran, Okay. et al. Proof for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Jin, C. et al. Statement of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Zhang, N. et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 18, 7651–7657 (2018).
Bayer, M., Stern, O., Hawrylak, P., Fafard, S. & Forchel, A. Hidden symmetries within the vitality ranges of excitonic ‘synthetic atoms’. Nature 405, 923–926 (2000).
Baek, H. et al. Extremely energy-tunable quantum mild from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
Kremser, M. et al. Discrete interactions between a couple of interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).
Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metallic dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).
Calman, E. V. et al. Oblique excitons and trions in MoSe2/WSe2 van der Waals heterostructures. Nano Lett. 20, 1869–1875 (2020).
Wang, T. et al. Large valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 20, 694–700 (2020).
Förg, M. et al. Moiré excitons in MoSe2-WSe2 heterobilayers and heterotrilayers. Nat. Commun. 12, 1656 (2021).
Shinokita, Okay., Miyauchi, Y., Watanabe, Okay., Taniguchi, T. & Matsuda, Okay. Moiré exciton dynamics and moiré exciton-phonon interplay in a WSe2/MoSe2 heterobilayer. Preprint at https://arxiv.org/abs/2012.08720 (2020)
Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Wonderful construction splitting within the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).
Toth, M. & Aharonovich, I. Single photon sources in atomically skinny supplies. Annu. Rev. Phys. Chem. 70, 123–142 (2019).
Ren, S., Tan, Q. & Zhang, J. Evaluation on the quantum emitters in two-dimensional supplies. J. Semicond. 40, 071903 (2019).
Jauregui, L. A. et al. Electrical management of interlayer exciton dynamics in atomically skinny heterostructures. Science 366, 870–875 (2019).
Choi, J. et al. Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett. 126, 047401 (2021).
Deilmann, T., Rohlfing, M. & Wurstbauer, U. Gentle–matter interplay in van der Waals hetero-structures. J. Condens. Matter Phys. 32, 333002 (2020).
Madéo, J. et al. Immediately visualizing the momentum-forbidden darkish excitons and their dynamics in atomically skinny semiconductors. Science 370, 1199–1204 (2020).
Wallauer, R. et al. Momentum-resolved remark of exciton formation dynamics in monolayer WS2. Nano Lett. 21, 5867–5873 (2021).
Man, M. Okay. L. et al. Experimental measurement of the intrinsic excitonic wave operate. Sci. Adv. 7, eabg0192 (2021).
Unuchek, D. et al. Room-temperature electrical management of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).
Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 (2019).
Brem, S., Linderälv, C., Erhart, P. & Malic, E. Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett. 20, 8534–8540 (2020).
Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).
Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).
Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: cost switch in transition metallic dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).
Kumar, A., Xie, M. & MacDonald, A. H. Lattice collective modes from a continuum mannequin of magic-angle twisted bilayer graphene. Phys. Rev. B 104, 035119 (2021).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Andrei, E. Y. et al. The marvels of moiré supplies. Nat. Rev. Mater. 6, 201–206 (2021).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
Zhou, Y. et al. Bilayer Wigner crystals in a transition metallic dichalcogenide heterostructure. Nature 595, 48–52 (2021).
Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).
Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).
Raja, A. et al. Dielectric dysfunction in two-dimensional supplies. Nat. Nanotechnol. 14, 832–837 (2019).
Hsu, W.-T. et al. Dielectric impression on exciton binding vitality and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 6, 025028 (2019).
Li, T. et al. Cost-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).
Liu, E. et al. Excitonic and valley-polarization signatures of fractional correlated digital phases in a WSe2/WS2 moiré superlattice. Phys. Rev. Lett. 127, 037402 (2021).
Woggon, U. Optical Properties of Semiconductor Quantum Dots Vol. 136 (Springer, 1997)
Peyghambarian, N., Koch, S. W. & Mysyrowicz, A. Introduction to Semiconductor Optics (Prentice Corridor, 1993)
Haug, H. & Koch, S. W. Quantum Principle of the Optical and Digital Properties of Semiconductors fifth edn (World Scientific, 2009)
Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).
McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).
Yoo, H. et al. Atomic and digital reconstruction on the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).
Li, H. et al. Imaging generalized Wigner crystal states in a WSe2/WS2 moiré superlattice. Preprint at https://arxiv.org/abs/2106.10599 (2021)
Halbertal, D. et al. Moiré metrology of vitality landscapes in van der Waals heterostructures. Nat. Commun. 12, 242 (2021).
Padhi, B., Chitra, R. & Phillips, P. W. Generalized Wigner crystallization in moiré supplies. Phys. Rev. B 103, 125146 (2021).
Zhang, Y., Liu, T. & Fu, L. Digital constructions, cost switch, and cost order in twisted transition metallic dichalcogenide bilayers. Phys. Rev. B 103, 155142 (2021).
Morales-Durán, N., MacDonald, A. H. & Potasz, P. Steel-insulator transition in transition metallic dichalcogenide heterobilayer moiré superlattices. Phys. Rev. B 103, L241110 (2021).
Pan, H. & Das Sarma, S. Interplay-driven filling-induced metal-insulator transitions in 2D moiré lattices. Phys. Rev. Lett. 127, 096802 (2021).
Zeng, Y. & MacDonald, A. H. Electrically managed two-dimensional electron-hole fluids. Phys. Rev. B 102, 085154 (2020).
Pan, H., Wu, F. & Das Sarma, S. Quantum part diagram of a Moiré-Hubbard mannequin. Phys. Rev. B 102, 201104 (2020).
Lian, B., Liu, Z., Zhang, Y. & Wang, J. Flat Chern band from twisted bilayer MnBi2Te4. Phys. Rev. Lett. 124, 126402 (2020).
Enaldiev, V. V., Ferreira, F., Magorrian, S. J. & Fal’Ko, V. I. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater. 8, 025030 (2021).
Yasuda, Okay., Wang, X., Watanabe, Okay., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).
Xiao, F., Chen, Okay. & Tong, Q. Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Res. 3, 013027 (2021).
Tong, Q., Chen, M., Xiao, F., Yu, H. & Yao, W. Interferences of electrostatic moiré potentials and bichromatic superlattices of electrons and excitons in transition metallic dichalcogenides. 2D Mater. 8, 025007 (2020).
Anđelković, M., Milovanović, S. P., Covaci, L. & Peeters, F. M. Double moiré with a twist: supermoiré in encapsulated graphene. Nano Lett. 20, 979–988 (2020).
Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).
Jin, C. et al. Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys. 15, 1140–1144 (2019).
[ad_2]