Progress in most cancers drug supply based mostly on AS1411 oriented nanomaterials | Journal of Nanobiotechnology

Progress in most cancers drug supply based mostly on AS1411 oriented nanomaterials | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Kordasht HK, Hasanzadeh M. Aptamer based mostly recognition of most cancers cells: latest progress and challenges in bioanalysis. Talanta. 2020;220: 121436.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Tan YY, et al. Views and developments within the design of nanomaterials for focused most cancers theranostics. Chem Biol Work together. 2020;329: 109221.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Mittal S, et al. Biosensors for breast most cancers analysis: a overview of bioreceptors, biotransducers and sign amplification methods. Biosens Bioelectron. 2017;88:217–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Mishra V, Kesharwani P. Dendrimer applied sciences for mind tumor. Drug Discov At the moment. 2016;21(5):766–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Rata DM, et al. Topical formulations containing aptamer-functionalized nanocapsules loaded with 5-fluorouracil—an progressive idea for the pores and skin most cancers remedy. Mater Sci Eng C Mater Biol Appl. 2021;119: 111591.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Yazdian-Robati R, et al. Software of aptamers in remedy and analysis of leukemia. Int J Pharm. 2017;529(1–2):44–54.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Vajhadin F, et al. Electrochemical cytosensors for detection of breast most cancers cells. Biosens Bioelectron. 2020;151: 111984.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Bai RG, Muthoosamy Okay, Manickam S. Nanomedicine in theranostics. In: Nanotechnology functions for tissue engineering. Elsevier: Amsterdam; 2015. p. 195–213.


    Google Scholar
     

  • 9.

    Bai X, et al. Luminescent nanocarriers for simultaneous drug or gene supply and imaging monitoring. TrAC, Traits Anal Chem. 2015;73:54–63.

    CAS 

    Google Scholar
     

  • 10.

    Simoes MCF, Sousa JJS, Pais A. Pores and skin most cancers and new remedy views: a overview. Most cancers Lett. 2015;357(1):8–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Li X, et al. Focused supply of anticancer medicine by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomedicine. 2015;11(1):175–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Abnous Okay, et al. A novel chemotherapy drug-free supply system composed of three therapeutic aptamers for the remedy of prostate and breast cancers in vitro and in vivo. Nanomedicine. 2017;13(6):1933–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Su H, Wang Z, Liu G. Close to-infrared fluorescence imaging probes for most cancers analysis and remedy. In: Most cancers theranostics. Amsterdam: Elsevier; 2014. p. 55–67.


    Google Scholar
     

  • 14.

    Saenzdel Burgo L, et al. Nanotherapeutic approaches for mind most cancers administration. Nanomedicine. 2014;10(5):905–19.


    Google Scholar
     

  • 15.

    Roy Chowdhury M, et al. Most cancers nanotheranostics: methods, guarantees and impediments. Biomed Pharmacother. 2016;84:291–304.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Wu D, et al. DNA nanostructure-based drug supply nanosystems in most cancers remedy. Int J Pharm. 2017;533(1):169–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Barani M, et al. Nanotechnology in ovarian most cancers: analysis and remedy. Life Sci. 2021;266: 118914.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Lee J, et al. Conjugation of prostate cancer-specific aptamers to polyethylene glycol-grafted polyethylenimine for enhanced gene supply to prostate most cancers cells. J Ind Eng Chem. 2019;73:182–91.

    CAS 

    Google Scholar
     

  • 19.

    Shu Y, et al. Secure RNA nanoparticles as potential new era medicine for most cancers remedy. Adv Drug Deliv Rev. 2014;66:74–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Dong J, et al. Practical DNA hexahedron for real-time detection of a number of microRNAs in residing cells. Anal Chim Acta. 2019;1078:176–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Hosu O, et al. Current approaches to the synthesis of sensible nanomaterials for nanodevices in illness analysis. In: Nanomaterials in diagnostic instruments and gadgets. Elsevier: Amsterdam; 2020. p. 1–55.


    Google Scholar
     

  • 22.

    Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for analysis, prognosis, remedy prediction and therapeutic instruments for breast most cancers. Theranostics. 2015;5(10):1122–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Großhans H, Filipowicz W. The increasing world of small RNAs. Nature. 2008;451:415–6.


    Google Scholar
     

  • 24.

    Mol CD, Izumi T, Mitra S. DNA-bound buildings and mutants reveal abasic DNA binding by APE1 DNA restore and coordination. Nature. 2000;403:451–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Mullen GP, Wilson SH, et al. DNA polymerase β in abasic web site restore a structurally conserved helix-hairpin-helix motif in lesion detection by base excision restore. Enzymes. 1997;36(16):4713–7.

    CAS 

    Google Scholar
     

  • 26.

    Stivers JT, Jiang YL. A mechanistic perspective on the chemistry of DNA restore glycosylases. Chem Rev. 2003;103:2729–59.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Solar B, et al. Research on the catalytic mechanism of 5 DNA glycosylases. Probing for enzyme-DNA imino intermediates. J Biol Chem. 1995;270(33):19501–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Piersen CE, McCullough AK, Stephen LR. AP lyases and dRPases commonality of mechanism. Mutat Res. 2000;459:43–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Yang Y, et al. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting most cancers related biomolecules. Carbon. 2018;129:380–95.

    CAS 

    Google Scholar
     

  • 30.

    Chen Z, et al. Nucleic acid based mostly nanocomposites and their functions in biomedicine. Composites Commun. 2018;10:194–204.


    Google Scholar
     

  • 31.

    Eivazzadeh-Keihan R, et al. Current advances on nanomaterial based mostly electrochemical and optical aptasensors for detection of most cancers biomarkers. TrAC, Traits Anal Chem. 2018;100:103–15.

    CAS 

    Google Scholar
     

  • 32.

    Hexin, Naling S, Aimin M. A number of organic capabilities of shuttle protein nucleoli. Mol Biol. 2012;18(13):1961–1964.

  • 33.

    Taghavi S, et al. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for mixture gene and drug supply into human gastric most cancers cells. Int J Pharm. 2017;516(1–2):301–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Zhou X, et al. A amperometric immunosensor for delicate detection of circulating tumor cells utilizing a tyramide sign amplification-based sign enhancement system. Biosens Bioelectron. 2019;130:88–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Rata DM, et al. “In vitro” behaviour of aptamer-functionalized polymeric nanocapsules loaded with 5-fluorouracil for focused remedy. Mater Sci Eng C Mater Biol Appl. 2019;103: 109828.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Dam DH, et al. Direct commentary of nanoparticle-cancer cell nucleus interactions. ACS Nano. 2012;6(4):3318–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Balasubramanian S, Hurley LH, Neidle S. Concentrating on G-quadruplexes in gene promoters: a novel anticancer technique? Nat Rev Drug Discov. 2011;10(4):261–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Orava EW, Cicmil N, Gariepy J. Delivering cargoes into most cancers cells utilizing DNA aptamers concentrating on internalized floor portals. Biochim Biophys Acta. 2010;1798(12):2190–200.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Wolfe AL, et al. RNA G-quadruplexes trigger eIF4A-dependent oncogene translation in most cancers. Nature. 2014;513(7516):65–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Xu Y. Chemistry in human telomere biology: construction, perform and concentrating on of telomere DNA/RNA. Chem Soc Rev. 2011;40(5):2719–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Fu Y, et al. Nanomaterials and nanoclusters based mostly on DNA modulation. Curr Opin Biotechnol. 2014;28:33–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Bagheri Z, et al. Spectral properties and thermal stability of AS1411 G-quadruplex. Int J Biol Macromol. 2015;72:806–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Bates PJ, et al. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: makes use of and mechanisms. Biochim Biophys Acta Gen Subj. 2017;1861(5 Pt B):1414–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Fan X, et al. The bioactivity of D-/L-isonucleoside- and a pair of’-deoxyinosine-incorporated aptamer AS1411s Together with DNA replication/microRNA expression. Mol Remedy Nucleic Acids. 2017;9:218–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Carvalho J, et al. G-quadruplex, buddy or foe: the position of the G-quartet in anticancer methods. Traits Mol Med. 2020;26(9):848–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Bates PJ, et al. Discovery and growth of the G-rich oligonucleotide AS1411 as a novel remedy for most cancers. Exp Mol Pathol. 2009;86(3):151–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Rizzo A, Salvati E, Biroccio A. Strategies of finding out telomere injury induced by quadruplex-ligand complexes. Strategies. 2012;57(1):93–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Park JY, et al. Gemcitabine-incorporated G-quadruplex aptamer for focused drug supply into pancreas most cancers. Mol Remedy Nucleic Acids. 2018;12:543–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Lopes-Nunes J, et al. Phthalocyanines for G-quadruplex aptamers binding. Bioorg Chem. 2020;100: 103920.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Xu J, et al. Current advances on G-quadruplex for biosensing, bioimaging and most cancers remedy. TrAC Traits Anal Chem. 2021. https://doi.org/10.1016/j.Trac.2021.116257.

    Article 

    Google Scholar
     

  • 51.

    Bagheri R, et al. The novel immobilization of G-quadruplex aptamer on Cu deposited floor utilizing electrochemical methodology. Mater Lett. 2021. https://doi.org/10.1016/j.Matlet.2020.128703.

    Article 

    Google Scholar
     

  • 52.

    Ma Y, et al. Annealing novel nucleobase-lipids with oligonucleotides or plasmid DNA based mostly on H-bonding or pi-pi interplay: assemblies and transfections. Biomaterials. 2018;178:147–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Yuan G, et al. Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation. Mass Spectrom Rev. 2011;30(6):1121–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Zhang X, et al. Progress on G-quadruplex as targets in anticancer drug construction screening and rational design. Chin Sci Bull. 2009;54(10):1374–86.


    Google Scholar
     

  • 55.

    Sen D, Glibert W. A sodium-potassium change within the formation of 4-stranded G-4-DNA. Nature. 1990;344(29):410–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes within the human genome detection, capabilities and therapeutic and potential. Nature. 2017;18:279–84.


    Google Scholar
     

  • 57.

    Germann MW, Johnson CN, Spring AM. Recognition of broken DNA: construction and dynamic markers. Med Res Rev. 2012;32(3):659–83.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Chen Y, et al. The foremost G-quadruplex shaped within the human platelet-derived progress issue receptor beta promoter adopts a novel broken-strand construction in Okay+ resolution. J Am Chem Soc. 2012;134(32):13220–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Smith FW, Felgon J. Quadruplex construction of Oxytricha telomeric DNA oligonucleotides. Nature. 1992;356(12):164–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Phan AT, Mergny J-L. Human telomeric DNA G-quadruplex, i-motif and Watson-Crick double helix. Nucleic Acids Res. 2002;30(21):4618–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Knies-Bamforth U, Huke D, Edwards G. Glyn Edwards talks about most cancers drug growth at Antisoma. Drug Discov At the moment. 2005;10(22):1491–4.


    Google Scholar
     

  • 62.

    Hua X, et al. Selective assortment and detection of MCF-7 breast most cancers cells utilizing aptamer-functionalized magnetic beads and quantum dots based mostly nano-bio-probes. Anal Chim Acta. 2013;788:135–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Leaderer D, Cashman SM, Kumar-Singh R. Topical software of a G-Quartet aptamer concentrating on nucleolin attenuates choroidal neovascularization in a mannequin of age-related macular degeneration. Exp Eye Res. 2015;140:171–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Figueiredo J, et al. AS1411 derivatives as carriers of G-quadruplex ligands for cervical most cancers cells. Int J Pharm. 2019;568: 118511.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Islam MK, Jackson PJM, Rahman KM. Current advances in concentrating on the telomeric G-quadruplex DNA sequence with small molecules as a technique for anticancer therapies. Future Med Chem. 2016;1–31.

  • 66.

    Kumar A, Zhang X, Liang XJ. Gold nanoparticles: rising paradigm for focused drug supply system. Biotechnol Adv. 2013;31(5):593–606.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Maldonado CR, et al. Nano-functionalization of steel complexes for molecular imaging and anticancer remedy. Coord Chem Rev. 2013;257(19–20):2668–88.

    CAS 

    Google Scholar
     

  • 68.

    Lim CK, et al. Nanophotosensitizers towards superior photodynamic remedy of Most cancers. Most cancers Lett. 2013;334(2):176–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine software. Nano At the moment. 2013;8(3):290–312.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Saenz del Burgo L, Pedraz JL, Orive G. Superior nanovehicles for most cancers administration. Drug Discov At the moment. 2014;19(10):1659–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Shutava TG, Fakhrullin RF, Lvov YM. Spherical and tubule nanocarriers for sustained drug launch. Curr Opin Pharmacol. 2014;18:141–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug supply. J Management Launch. 2015;220(Pt B):600–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Jia X, Dong S, Wang E. Engineering the bioelectrochemical interface utilizing useful nanomaterials and microchip approach towards delicate and transportable electrochemical biosensors. Biosens Bioelectron. 2016;76:80–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Giménez-Marqués M, et al. Nanostructured steel–natural frameworks and their bio-related functions. Coord Chem Rev. 2016;307:342–60.


    Google Scholar
     

  • 75.

    Zeng Y, et al. The functions of functionalized DNA nanostructures in bioimaging and most cancers remedy. Biomaterials. 2021;268: 120560.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Han L, et al. Redox-responsive theranostic nanoplatforms based mostly on inorganic nanomaterials. J Management Launch. 2017;259:40–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Xie J, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing methods. Biomaterials. 2019;224: 119491.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Wu M, et al. Pea-like nanocabins allow autonomous cruise and step-by-step drug pushing for deep tumor inhibition. Nanomedicine. 2019;18:122–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Giannetti A, Tombelli S. Aptamer optical switches: from biosensing to intracellular sensing. Sens Actuators Rep. 2021;3.

  • 80.

    Farbod F, Mazloum-Ardakani M. Usually used nanomaterials-based noncarbon supplies within the fabrication of biosensors. In: Electrochemical biosensors. 2019. p. 99–133.

  • 81.

    Reyes-Reyes EM, et al. Mechanistic research of anticancer aptamer AS1411 reveal a novel position for nucleolin in regulating Rac1 activation. Mol Oncol. 2015;9(7):1392–405.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Track N, et al. Stimuli-responsive blue fluorescent supramolecular polymers based mostly on a pillar[5]arene tetramer. Chem Commun (Camb). 2014;50(60):8231–4.

    CAS 

    Google Scholar
     

  • 83.

    Fonseca NA, et al. Nucleolin overexpression in breast most cancers cell sub-populations with completely different stem-like phenotype allows focused intracellular supply of synergistic drug mixture. Biomaterials. 2015;69:76–88.

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Alibolandi M, et al. AS1411 aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersomes for the focused supply of gemcitabine to non-small cell lung most cancers in vitro. J Pharm Sci. 2016;105(5):1741–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Shieh Y-A, Yang S-J, Wei M-F, et al. Aptamer-based tumor-targeted drug supply for photodynamic remedy. ACS Nano. 2010;4(3):1433–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Jain N, et al. Concentrating on nucleolin for higher survival in diffuse massive B-cell lymphoma. Leukemia. 2018;32(3):663–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Saravanakumar Okay, et al. Twin stimuli-responsive launch of aptamer AS1411 embellished erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma remedy. Carbohydr Polym. 2020;245: 116407.

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Vivanco-Rojas O, et al. Corneal neovascularization is inhibited with nucleolin-binding aptamer, AS1411. Exp Eye Res. 2020;193: 107977.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Jing Y, et al. Aptamer AS1411 utilized for super-resolution imaging of nucleolin. Talanta. 2020;217: 121037.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Saravanakumar Okay, et al. Enhanced most cancers remedy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles. Arch Biochem Biophys. 2019;671:143–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Ishimaru D, et al. Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding issue 1 (AUF1). J Biol Chem. 2010;285(35):27182–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Perrone R, et al. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int J Antimicrob Brokers. 2016;47(4):311–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Li H, et al. Aptamer-based microcantilever biosensor for ultrasensitive detection of tumor marker nucleolin. Talanta. 2016;146:727–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Miranda A, et al. Aptamer-based approaches to detect nucleolin in prostate most cancers. Talanta. 2021;226: 122037.

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Li X, et al. A nuclear focused Dox-aptamer loaded liposome supply platform for the circumvention of drug resistance in breast most cancers. Biomed Pharmacother. 2019;117: 109072.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Shi CF, et al. Ultrasensitive plasmon enhanced Raman scattering detection of nucleolin utilizing nanochannels of 3D hybrid plasmonic metamaterial. Biosens Bioelectron. 2021;178: 113040.

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    Zhang R, et al. Aptamer cell sensor based mostly on porous graphene oxide embellished ion-selective-electrode: double sensing platform for cell and ion. Biosens Bioelectron. 2018;117:303–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Alibolandi M, et al. Fabrication of aptamer embellished dextran coated nano-graphene oxide for focused drug supply. Carbohydr Polym. 2017;155:218–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Feng L, et al. A graphene functionalized electrochemical aptasensor for selective label-free detection of most cancers cells. Biomaterials. 2011;32(11):2930–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Hu S, et al. Medical out there circulating tumor cell assay based mostly on tetra(4-aminophenyl) porphyrin mediated lowered graphene oxide discipline impact transistor. Electrochim Acta. 2019;313:415–22.

    CAS 

    Google Scholar
     

  • 101.

    Ma Q, Li Y, Su X. Silica-nanobead-based sensors for analytical and bioanalytical functions. TrAC, Traits Anal Chem. 2015;74:130–45.

    CAS 

    Google Scholar
     

  • 102.

    Slowing II, et al. Mesoporous silica nanoparticles for drug supply and biosensing functions. Adv Func Mater. 2007;17(8):1225–36.

    CAS 

    Google Scholar
     

  • 103.

    Mehmood A, et al. Mesoporous silica nanoparticles: a overview. J Dev Medication. 2017. https://doi.org/10.4172/2329-6631.1000174.

    Article 

    Google Scholar
     

  • 104.

    Moreira AF, Dias DR, Correia IJ. Stimuli-responsive mesoporous silica nanoparticles for most cancers remedy: a overview. Microporous Mesoporous Mater. 2016;236:141–57.

    CAS 

    Google Scholar
     

  • 105.

    Feng Y, et al. The appliance of mesoporous silica nanoparticle household in most cancers theranostics. Coord Chem Rev. 2016;319:86–109.

    CAS 

    Google Scholar
     

  • 106.

    Kumar P, et al. Mesoporous silica nanoparticles as cutting-edge theranostics: development from merely a provider to tailored sensible supply platform. J Management Launch. 2018;287:35–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Charbgoo F, et al. Ladder-like focused and gated doxorubicin supply utilizing bivalent aptamer in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2021;119: 111618.

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Babaei M, et al. Focused rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA in to colon adenocarcinoma in vitro and in vivo. Eur J Pharm Biopharm. 2020;156:84–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Rycenga M, et al. Controlling the synthesis and meeting of silver nanostructures for plasmonic functions. Chem Rev. 2011;111(6):3669–712.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Li J, et al. Aptamer-tagged green- and yellow-emitting fluorescent silver nanoclusters for particular tumor cell imaging. Sens Actuators, B Chem. 2016;232:1–8.

    CAS 

    Google Scholar
     

  • 111.

    Ai J, et al. DNA G-quadruplex-templated formation of the fluorescent silver nanocluster and its software to bioimaging. Talanta. 2012;88:450–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Ai J, et al. Multifunctional near-infrared fluorescent nanoclusters for simultaneous focused most cancers imaging and photodynamic remedy. Sens Actuators, B Chem. 2016;222:918–22.

    CAS 

    Google Scholar
     

  • 113.

    Sudhakar S, Santhosh PB. Gold nanomaterials. 2017. p. 161–80.


    Google Scholar
     

  • 114.

    Luo Y-L, Shiao Y-S, Huang Y-F. Launch of photoactivatable medicine from plasmonic nanoparticles for focused most cancers remedy. ACS Nano. 2011;5(10):7796–804.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Zhang Y, et al. Plasmonic modulation of gold nanotheranostics for focused NIR-II photothermal-augmented immunotherapy. Nano At the moment. 2020. https://doi.org/10.1016/j.Nantod.2020.100987.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Zhang Y, et al. Laser-triggered collaborative chemophotothermal impact of gold nanoparticles for focused colon most cancers remedy. Biomed Pharmacother. 2020;130: 110492.

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Khademi Z, et al. Co-delivery of doxorubicin and aptamer in opposition to Forkhead field M1 utilizing chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic remedy of most cancers cells. Carbohydr Polym. 2020;248: 116735.

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Kabirian-Dehkordi S, et al. AS1411-conjugated gold nanoparticles have an effect on cell proliferation by means of a mechanism that appears unbiased of nucleolin. Nanomedicine. 2019;21: 102060.

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Borghei YS, et al. Visible detection of most cancers cells by colorimetric aptasensor based mostly on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta. 2016;904:92–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Baneshi M, et al. A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin supply. Int J Pharm. 2019;564:145–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Hong EJ, et al. Most cancers-targeted photothermal remedy utilizing aptamer-conjugated gold nanoparticles. J Ind Eng Chem. 2018;67:429–36.

    CAS 

    Google Scholar
     

  • 122.

    Deng R, et al. Concentrating on epigenetic pathway with gold nanoparticles for acute myeloid leukemia remedy. Biomaterials. 2018;167:80–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Ai J, et al. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for focused most cancers cell imaging and environment friendly photodynamic remedy. Talanta. 2014;118:54–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 124.

    Chen D, et al. Twin concentrating on luminescent gold nanoclusters for tumor imaging and deep tissue remedy. Biomaterials. 2016;100:1–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Ruttala HB, et al. Multi-responsive albumin-lonidamine conjugated hybridized gold nanoparticle as a mixed photothermal-chemotherapy for synergistic tumor ablation. Acta Biomater. 2020;101:531–43.

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Cao H-X, et al. Nonenzymatic chemiluminescence detection of circulating tumor cells in blood based mostly on Au@luminol nanoparticles, hybridization chain response and magnetic isolation. Sens Actuators B Chem. 2020; 318.

  • 127.

    Cai S, et al. Aptamer-functionalized molybdenum disulfide nanosheets for tumor cell concentrating on and lysosomal acidic setting/NIR laser responsive drug supply to comprehend synergetic chemo-photothermal therapeutic results. Int J Pharm. 2020;590: 119948.

    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Wang X, Zhong X, Cheng L. Titanium-based nanomaterials for most cancers theranostics. Coord Chem Rev. 2021. https://doi.org/10.1016/j.Ccr.2020.213662.

    Article 

    Google Scholar
     

  • 129.

    Liu H, et al. Fabrication of aptamer modified TiO2 nanofibers for particular seize of circulating tumor cells. Colloids Surf B Biointerfaces. 2020;191: 110985.

    CAS 
    PubMed 

    Google Scholar
     

  • 130.

    Gao H, Jiang X. Perspective on methods to cut back the neurotoxicity of nanomaterials and nanomedicines. In: Neurotoxicity of nanomaterials and nanomedicine. Amsterdam: Elsevier; 2017. p. 331–6.


    Google Scholar
     

  • 131.

    Guleria A, Priyatharchini Okay, Kumar D. Biomedical functions of magnetic nanomaterials. In: Functions of nanomaterials. Amsterdam: Elsevier; 2018. p. 345–89.


    Google Scholar
     

  • 132.

    Silva AL, et al. Practical moieties for intracellular site visitors of nanomaterials. In: Biomedical functions of functionalized nanomaterials. Amsterdam: Elsevier; 2018. p. 399–448.


    Google Scholar
     

  • 133.

    564 Efficacy of a molecular methodology for detection of lymph node metastases in early breast most cancers. Poster Session—Bioinformatics. 2010;178.

  • 134.

    Maltese WA, Overmeyer JH. Methuosis: nonapoptotic cell loss of life related to vacuolization of macropinosome and endosome compartments. Am J Pathol. 2014;184(6):1630–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Trinh T, et al. 454 AS1411 as a possible anti-cancer reagent for remedy of hepatocellular carcinoma. Eur J Most cancers. 2012. https://doi.org/10.1016/S0959-8049(12)72252-9.

    Article 
    PubMed 

    Google Scholar
     

  • 136.

    Suganuma M, et al. Human gastric most cancers growth with TNF-alpha-inducing protein secreted from Helicobacter pylori. Most cancers Lett. 2012;322(2):133–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 137.

    Fan G-C, et al. Sturdy photoelectrochemical cytosensor in organic media utilizing antifouling property of zwitterionic peptide. Sens Actuators B Chem. 2019; 299.

  • 138.

    Leaderer D, Cashman SM, Kumar-Singh R. G-quartet oligonucleotide mediated supply of proteins into photoreceptors and retinal pigment epithelium through intravitreal injection. Exp Eye Res. 2016;145:380–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    Metifiot M, et al. Anticancer molecule AS1411 reveals low nanomolar antiviral exercise in opposition to HIV-1. Biochimie. 2015;118:173–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    Gao H, Jiang X. The medical functions of nanomaterials within the central nervous system. In: Neurotoxicity of nanomaterials and nanomedicine. Elsevier: Amsterdam; 2017. p. 1–31.


    Google Scholar
     

  • 141.

    Li J, et al. One-pot preparation of hydrophilic manganese oxide nanoparticles as T1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens Bioelectron. 2018;102:1–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Zhang Y, et al. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement. Biosens Bioelectron. 2017;94:478–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 143.

    Luo Z, et al. Exact glioblastoma concentrating on by AS1411 aptamer-functionalized poly (l-gamma-glutamylglutamine)-paclitaxel nanoconjugates. J Colloid Interface Sci. 2017;490:783–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 144.

    Alibolandi M, et al. Good AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior supply of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm. 2017;519(1–2):352–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 145.

    Lopes-Nunes J, et al. Organic research of an ICG-tagged aptamer as drug supply system for malignant melanoma. Eur J Pharm Biopharm. 2020;154:228–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Guo Y, et al. Self-assembled peptide nanoparticles with endosome escaping permits for co-drug supply. Talanta. 2021;221: 121572.

    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Wang H, et al. AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel for enhanced antiglioma remedy. J Pharm Sci. 2019;108(11):3684–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 148.

    Kuijper S, et al. 272 POSTER exercise of the anti-cancer aptamer AS1411 contains regulation of Bcl-2 members of the family. Eur J Most cancers Suppl. 2008. https://doi.org/10.1016/S1359-6349(08)72206-7.

    Article 

    Google Scholar
     

  • 149.

    Li J, et al. Aptamer imaging with Cu-64 labeled AS1411: preliminary evaluation in lung most cancers. Nucl Med Biol. 2014;41(2):179–85.

    PubMed 

    Google Scholar
     

  • 150.

    Bahreyni A, et al. Excessive affinity of AS1411 towards copper; its software in a delicate aptasensor for copper detection. Anal Biochem. 2019;575:1–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 151.

    Bates PJ, et al. Antiproliferative exercise of G-rich oligonucleotides correlates with protein binding. J Biol Chem. 1999;274(37):26369–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 152.

    Zhan Y, et al. DNA-based nanomedicine with concentrating on and enhancement of therapeutic efficacy of breast most cancers cells. ACS Appl Mater Interfaces. 2019;11(17):15354–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 153.

    Yazdian-Robati R, et al. Therapeutic functions of AS1411 aptamer, an replace overview. Int J Biol Macromol. 2020;155:1420–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Langer R. New strategies of drug supply. Science. 1990;247:1527–33.


    Google Scholar
     

  • 155.

    Guo J, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug supply. Biomaterials. 2011;32(31):8010–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 156.

    Tan W, et al. Molecular aptamers for drug supply. Traits Biotechnol. 2011;29(12):634–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 157.

    Xing H, et al. DNA aptamer functionalized nanomaterials for intracellular evaluation, most cancers cell imaging and drug supply. Curr Opin Chem Biol. 2012;16(3–4):429–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 158.

    Kim JK, et al. Molecular imaging of a cancer-targeting theragnostics probe utilizing a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials. 2012;33(1):207–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Gao H, et al. Exact glioma concentrating on of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012;33(20):5115–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 160.

    Aravind A, et al. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for focused most cancers remedy. J Magn Magn Mater. 2013;344:116–23.

    CAS 

    Google Scholar
     

  • 161.

    Chen H, et al. Aptamer modification improves the adenoviral transduction of malignant glioma cells. J Biotechnol. 2013;168(4):362–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 162.

    Wong BS, et al. Carbon nanotubes for supply of small molecule medicine. Adv Drug Deliv Rev. 2013;65(15):1964–2015.

    CAS 
    PubMed 

    Google Scholar
     

  • 163.

    Chen H, et al. Nanoparticles for bettering most cancers analysis. Mater Sci Eng R Rep. 2013;74(3):35–69.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 164.

    Li S, et al. Advances in organic functions of self-assembled DNA tetrahedral nanostructures. Mater At the moment. 2019;24:57–68.

    CAS 

    Google Scholar
     

  • 165.

    Dam DH, et al. Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars. Nanomedicine. 2015;11(3):671–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 166.

    Bose RJ, Lee SH, Park H. Biofunctionalized nanoparticles: an rising drug supply platform for varied illness remedies. Drug Discov At the moment. 2016;21(8):1303–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 167.

    Gallina ME, et al. Aptamer-conjugated, fluorescent gold nanorods as potential most cancers theradiagnostic brokers. Mater Sci Eng C Mater Biol Appl. 2016;59:324–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 168.

    Vago R, et al. Nanoparticle-mediated supply of suicide genes in most cancers remedy. Pharmacol Res. 2016;111:619–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 169.

    Gao H. Progress and views on concentrating on nanoparticles for mind drug supply. Acta Pharm Sin B. 2016;6(4):268–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 170.

    Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug supply. Adv Drug Deliv Rev. 2018;134:122–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 171.

    Zhou G, et al. Aptamers as concentrating on ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev. 2018;134:107–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 172.

    Vandghanooni S, et al. Current advances in aptamer-armed multimodal theranostic nanosystems for imaging and focused remedy of most cancers. Eur J Pharm Sci. 2018;117:301–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 173.

    Buddolla AL, Kim S. Current insights into the event of nucleic acid-based nanoparticles for tumor-targeted drug supply. Colloids Surf B Biointerfaces. 2018;172:315–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 174.

    Ghaffari M, et al. Floor functionalized dendrimers as controlled-release supply nanosystems for tumor concentrating on. Eur J Pharm Sci. 2018;122:311–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 175.

    Solar X-Y, et al. A dual-targeted nucleic acid moiety embellished SPION nanoparticles for chemo-photodynamic synergistic remedy. J Lumin. 2019;209:387–97.

    CAS 

    Google Scholar
     

  • 176.

    Li B, et al. Molecularly engineered truncated tissue issue with therapeutic aptamers for tumor-targeted supply and vascular infarction. Acta Pharm Sin B. 2020. https://doi.org/10.1016/j.Apsb.2020.11.014.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 177.

    Veronese FM, Pasut G. PEGylation, profitable strategy to drug supply. Drug Discov At the moment. 2005;10(21):1451–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 178.

    Fang J, Nakamura H, Maeda H. The EPR impact: Distinctive options of tumor blood vessels for drug supply, elements concerned, and limitations and augmentation of the impact. Adv Drug Deliv Rev. 2011;63(3):136–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 179.

    Petros RA, DeSimone JM. Methods within the design of nanoparticles for therapeutic functions. Nat Rev Drug Discov. 2010;9(8):615–27.

    CAS 
    PubMed 

    Google Scholar
     

  • 180.

    Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for mixed ct imaging and remedy of prostate most cancers. ACS Nano. 2010;4(7):3689–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 181.

    Morelli C, et al. PEG-templated mesoporous silica nanoparticles solely goal most cancers cells. Nanoscale. 2011;3(8):3198–207.

    CAS 
    PubMed 

    Google Scholar
     

  • 182.

    Wang M, Thanou M. Concentrating on nanoparticles to most cancers. Pharmacol Res. 2010;62(2):90–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 183.

    Bae Y, et al. Design of environment-sensitive supramolecular assemblies for intracellular drug supply: polymeric micelles which can be attentive to intracellular pH change. Angew Chem. 2003;115(38):4788–91.


    Google Scholar
     

  • 184.

    Xu H, Meng F, Zhong Z. Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug launch. J Mater Chem. 2009. https://doi.org/10.1039/b901141b.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 185.

    Yavuz MS, et al. Gold nanocages lined by sensible polymers for managed launch with near-infrared mild. Nat Mater. 2009;8(12):935–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 186.

    Chen S, et al. Concentrating on tumor microenvironment with PEG-based amphiphilic nanoparticles to beat chemoresistance. Nanomedicine. 2016;12(2):269–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 187.

    Ortiz AC, et al. Aptamer-functionalized lipid-core micelles loaded with rhenium tricarbonyl advanced. Polyhedron. 2021. https://doi.org/10.1016/j.poly.2020.114963.

    Article 

    Google Scholar
     

  • 188.

    Riccardi C, et al. Exploring the conformational behaviour and aggregation properties of lipid-conjugated AS1411 aptamers. Int J Biol Macromol. 2018;118(Pt B):1384–99.

    CAS 
    PubMed 

    Google Scholar
     

  • 189.

    Jia Q, et al. PEGMA-modified bimetallic NiCo Prussian blue analogue doped with Tb(III) ions: effectively pH-responsive and managed launch system for anticancer drug. Chem Eng J. 2020. https://doi.org/10.1016/j.Cej.2020.124468.

    Article 

    Google Scholar
     

  • 190.

    Kang YY, et al. Implication of multivalent aptamers in DNA and DNA–RNA hybrid buildings for environment friendly drug supply in vitro and in vivo. J Ind Eng Chem. 2018;60:250–8.

    CAS 

    Google Scholar
     

  • 191.

    Tekie FSM, et al. Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles focused with AS1411 aptamer for most cancers remedy. Carbohydr Polym. 2018;201:131–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 192.

    Gao H, et al. Examine and analysis of mechanisms of twin concentrating on drug supply system with tumor microenvironment assays in contrast with regular assays. Acta Biomater. 2014;10(2):858–67.

    CAS 
    PubMed 

    Google Scholar
     

  • 193.

    Wang Z, et al. Aptamer-functionalized hydrogel as efficient anti-cancer medicine supply brokers. Colloids Surf B Biointerfaces. 2015;134:40–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 194.

    Taghdisi SM, et al. Double concentrating on and aptamer-assisted managed launch supply of epirubicin to most cancers cells by aptamers-based dendrimer in vitro and in vivo. Eur J Pharm Biopharm. 2016;102:152–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 195.

    Xu L, et al. Aptamer-functionalized albumin-based nanoparticles for focused drug supply. Colloids Surf B Biointerfaces. 2018;171:24–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 196.

    Li L, et al. Nucleolin-targeting liposomes guided by aptamer AS1411 for the supply of siRNA for the remedy of malignant melanomas. Biomaterials. 2014;35(12):3840–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 197.

    Taghdisi SM, et al. Co-delivery of doxorubicin and α-PCNA aptamer utilizing AS1411-modified pH-responsive nanoparticles for most cancers synergistic remedy. J Drug Deliv Sci Technol. 2020. https://doi.org/10.1016/j.Jddst.2020.101816.

    Article 

    Google Scholar
     

  • 198.

    Pei W, et al. Excessive payload and focused launch of anthracyclines by aptamer-tethered DNA nanotrains—thermodynamic and launch kinetic examine. Eur J Pharm Sci. 2020;148: 105319.

    CAS 
    PubMed 

    Google Scholar
     

  • 199.

    Ma H, et al. A twin useful fluorescent probe for glioma imaging mediated by blood-brain barrier penetration and glioma cell concentrating on. Biochem Biophys Res Commun. 2014;449(1):44–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 200.

    Zhou J, Rossi JJ. Cell-type-specific, aptamer-functionalized brokers for focused illness remedy. Mol Remedy Nucleic Acids. 2014;3: e169.

    CAS 
    PubMed 

    Google Scholar
     

  • 201.

    Zhang B, et al. Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug supply autos for liver tumor-targeted triplex remedy in vitro and in vivo. J Management Launch. 2014;192:192–201.

    CAS 
    PubMed 

    Google Scholar
     

  • 202.

    Xing H, et al. DNA aptamer know-how for customized drugs. Curr Opin Chem Eng. 2014;4:79–87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 203.

    Solar H, et al. Oligonucleotide aptamers: new instruments for focused most cancers remedy. Mol Remedy Nucleic Acids. 2014;3: e182.

    CAS 
    PubMed 

    Google Scholar
     

  • 204.

    Mokhtarzadeh A, et al. Aptamers as sensible ligands for nano-carriers concentrating on. TrAC, Traits Anal Chem. 2016;82:316–27.

    CAS 

    Google Scholar
     

  • 205.

    Du Y-L, et al. Aptamers from cell-based choice for bioanalysis and bioimaging. Chin J Anal Chem. 2017;45(12):1757–65.


    Google Scholar
     

  • 206.

    Popescu RC, et al. Particularly focused imaging utilizing functionalized nanoparticles. In: Nanobiomaterials in medical imaging. Amsterdam: Elsevier; 2016. p. 1–44.


    Google Scholar
     

  • 207.

    Liu J, et al. Multifunctional aptamer-based nanoparticles for focused drug supply to bypass most cancers resistance. Biomaterials. 2016;91:44–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 208.

    Zhou L, Ren J, Qu X. Nucleic acid-templated useful nanocomposites for biomedical functions. Mater At the moment. 2017;20(4):179–90.

    CAS 

    Google Scholar
     

  • 209.

    Nejabat M, et al. Fabrication of acetylated carboxymethylcellulose coated hole mesoporous silica hybrid nanoparticles for nucleolin focused supply to colon adenocarcinoma. Carbohydr Polym. 2018;197:157–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 210.

    Talreja D, et al. G-quartet oligonucleotide mediated supply of useful X-linked inhibitor of apoptosis protein into retinal cells following intravitreal injection. Exp Eye Res. 2018;175:20–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 211.

    Zhu X, et al. Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and focused chemo-photodynamic remedy of glioma. Acta Biomater. 2018;82:143–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 212.

    Liu BY, et al. Tumor focused genome enhancing mediated by a multi-functional gene vector for regulating cell behaviors. J Management Launch. 2018;291:90–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 213.

    Li Z, et al. Functionalized single-walled carbon nanotubes: mobile uptake, biodistribution and functions in drug supply. Int J Pharm. 2017;524(1–2):41–54.

    CAS 
    PubMed 

    Google Scholar
     

  • 214.

    Su F, et al. Aptamer-templated silver nanoclusters embedded in zirconium steel–natural framework for focused antitumor drug supply. Microporous Mesoporous Mater. 2019;275:152–62.

    CAS 

    Google Scholar
     

  • 215.

    Chen L, et al. Utilizing PEGylated magnetic nanoparticles to explain the EPR impact in tumor for predicting therapeutic efficacy of micelle medicine. Nanoscale. 2018;10(4):1788–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 216.

    Tang Y, et al. A biomimetic microfluidic tumor microenvironment platform mimicking the EPR impact for speedy screening of drug supply methods. Sci Rep. 2017;7(1):9359.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 217.

    Han Y, et al. Immune lipoprotein nanostructures impressed relay drug supply for amplifying antitumor effectivity. Biomaterials. 2018;185:205–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 218.

    Luo Z, Ding X, Yan H, et al. Engineering a hole nanocontainer platform with multifunctional molecular machines for tumor-targeted remedy in vitro and in vivo. ACS Nano. 2013;7(11):10271–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 219.

    Wang J, Goodman M. Public diplomacy and world enterprise. J Bus Strateg. 2006;27(3):41–9.


    Google Scholar
     

  • 220.

    Chen Q, et al. Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted mixture remedy. ACS Nano. 2015;9(5):5223–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 221.

    Guo X, et al. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung most cancers. Carbohydr Polym. 2018;195:311–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 222.

    Radom F, et al. Aptamers: molecules of nice potential. Biotechnol Adv. 2013;31(8):1260–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 223.

    Ospina-Villa JD, et al. Aptamers as a promising strategy for the management of parasitic ailments. Braz J Infect Dis. 2016;20(6):610–8.

    PubMed 

    Google Scholar
     

  • 224.

    de Almeida CEB, et al. Aptamer supply of siRNA, radiopharmaceutics and chemotherapy brokers in most cancers. Int J Pharm. 2017;525(2):334–42.

    PubMed 

    Google Scholar
     

  • 225.

    Yu L-X, et al. Progress in DNA tetrahedral nanomaterials and their functionalization analysis. Chin J Anal Chem. 2019;47(11):1742–50.

    CAS 

    Google Scholar
     

  • 226.

    Santos T, et al. RNA G-quadruplex as supramolecular provider for cancer-selective supply. Eur J Pharm Biopharm. 2019;142:473–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 227.

    Stoltenburg R, Reinemann C, Strehlitz B. SELEX–a (r)evolutionary methodology to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403.

    CAS 
    PubMed 

    Google Scholar
     

  • 228.

    Solar Q, et al. Software of DNA nanostructures in most cancers remedy. Appl Mater At the moment. 2020. https://doi.org/10.1016/j.Apmt.2020.100861.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 229.

    Ding F, Gao Y, He X. Current progresses in biomedical functions of aptamer-functionalized methods. Bioorg Med Chem Lett. 2017;27(18):4256–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 230.

    Fang X, Tan W. Aptamers generated from cell-SELEX for molecular drugs: a chemical biology strategy. Acc Chem Res. 2010;43(1):48–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 231.

    Liao ZX, et al. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J Management Launch. 2015;208:42–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 232.

    ZhuXinjian SX, et al. Overview and analysis progress of fluorescent molecular imaging know-how. Chin J Med Instrum. 2008;32(1):1–6.

    CAS 

    Google Scholar
     

  • 233.

    Allard E, Larpent C. Core-shell sort dually fluorescent polymer nanoparticles for ratiometric pH-sensing. J Polym Sci, Half A: Polym Chem. 2008;46(18):6206–13.

    CAS 

    Google Scholar
     

  • 234.

    Cibiel A, Pestourie C, Duconge F. In vivo makes use of of aptamers chosen in opposition to cell floor biomarkers for remedy and molecular imaging. Biochimie. 2012;94(7):1595–606.

    CAS 
    PubMed 

    Google Scholar
     

  • 235.

    Lee SY, et al. Focused multimodal imaging modalities. Adv Drug Deliv Rev. 2014;76:60–78.

    CAS 
    PubMed 

    Google Scholar
     

  • 236.

    Kobayashi H, Choyke PL. Goal-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo functions. Acc Chem Res. 2011;44(2):83–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 237.

    Wang T, et al. Label-free electrochemical aptasensor constructed by layer-by-layer know-how for delicate and selective detection of most cancers cells. Anal Chim Acta. 2015;882:32–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 238.

    Ou D, et al. A novel cytosensor for seize, detection and launch of breast most cancers cells based mostly on steel natural framework PCN-224 and DNA tetrahedron linked dual-aptamer. Sens Actuators, B Chem. 2019;285:398–404.

    CAS 

    Google Scholar
     

  • 239.

    Wencel D, Abel T, McDonagh C. Optical chemical pH sensors. Anal Chem. 2014;86(1):15–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 240.

    Wu L, et al. Twin-modal colorimetric/fluorescence molecular probe for ratiometric sensing of pH and its software. Anal Chem. 2016;88(16):8332–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 241.

    Mosmann T. Speedy colorimetric assay for mobile progress and survivalapplication to proliferation and cytotoxicity assays. J lmmunol Strategies. 1983;65:55–63.

    CAS 

    Google Scholar
     

  • 242.

    Li X, Zhao Q, Qiu L. Good ligand: aptamer-mediated focused supply of chemotherapeutic medicine and siRNA for most cancers remedy. J Management Launch. 2013;171(2):152–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 243.

    Zhou L, et al. DNA-mediated biomineralization of rare-earth nanoparticles for simultaneous imaging and stimuli-responsive drug supply. Biomaterials. 2014;35(30):8694–702.

    CAS 
    PubMed 

    Google Scholar
     

  • 244.

    Liu X, et al. A dual-targeting DNA tetrahedron nanocarrier for breast most cancers cell imaging and drug supply. Talanta. 2018;179:356–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 245.

    Ko HY, et al. A multimodal nanoparticle-based most cancers imaging probe concurrently concentrating on nucleolin, integrin alphavbeta3 and tenascin-C proteins. Biomaterials. 2011;32(4):1130–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 246.

    Mosafer J, et al. In vitro and in vivo analysis of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced focused most cancers imaging and remedy. Eur J Pharm Biopharm. 2017;113:60–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 247.

    Zhang HJ, et al. Dendrimer grafted persistent luminescent nanoplatform for aptamer guided tumor imaging and acid-responsive drug supply. Talanta. 2020;219: 121209.

    CAS 
    PubMed 

    Google Scholar
     

  • 248.

    Ai J, et al. In situ labeling and imaging of mobile protein through a bi-functional anticancer aptamer and its fluorescent ligand. Anal Chim Acta. 2012;741:93–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 249.

    Lopes-Nunes J, et al. Aptamer-functionalized gold nanoparticles for drug supply to gynecological carcinoma cells. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13164038.

    Article 

    Google Scholar
     

  • 250.

    Zhang W, et al. Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for lively tumour bioimaging and remedy. Cell Prolif. 2021;54(9): e13105.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 251.

    Vindigni G, et al. AS1411 aptamer linked to DNA nanostructures diverts its site visitors inside most cancers cells and improves its therapeutic efficacy. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13101671.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 252.

    Su YB, et al. Fabrication of G-quadruplex/porphyrin conjugated gold/persistent luminescence theranostic nanoprobe for imaging-guided photodynamic remedy. Talanta. 2021;233: 122567.

    CAS 
    PubMed 

    Google Scholar
     

  • 253.

    Yılmaz HE, et al. Interplay of water soluble cationic gallium(III) phthalocyanines with completely different G-quadruplex DNAs. Polyhedron. 2021. https://doi.org/10.1016/j.poly.2021.115404.

    Article 

    Google Scholar
     

  • 254.

    Miranda A, et al. Locking up the AS1411 aptamer with a flanking duplex: in the direction of an improved nucleolin-targeting. Prescribed drugs (Basel). 2021. https://doi.org/10.3390/ph14020121.

    Article 

    Google Scholar
     

  • 255.

    Choo P, Liu T, Odom TW. Nanoparticle form determines dynamics of concentrating on nanoconstructs on cell membranes. J Am Chem Soc. 2021;143(12):4550–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 256.

    Mehrnia SS, et al. Radiosensitization of breast most cancers cells utilizing AS1411 aptamer-conjugated gold nanoparticles. Radiat Oncol. 2021;16(1):33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 257.

    Dehghani S, et al. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for focused most cancers gene supply. Colloids Surf B Biointerfaces. 2021;208: 112047.

    CAS 
    PubMed 

    Google Scholar
     

  • 258.

    Zhang X, et al. A dual-functional nanovehicle with fluorescent monitoring and its focused killing results on hepatocellular carcinoma cells. RSC Adv. 2021;11(18):10986–95.

    CAS 

    Google Scholar
     

  • 259.

    Rotkrua P, et al. A molecular hybrid comprising AS1411 and PDGF-BB aptamer, ldl cholesterol, and doxorubicin for inhibiting proliferation of SW480 cells. J Mol Recognit. 2021;34(11): e2926.

    CAS 
    PubMed 

    Google Scholar
     

  • 260.

    Wang Y, et al. Growth of FL/MR dual-modal Au nanobipyramids for focused most cancers imaging and photothermal remedy. Mater Sci Eng C Mater Biol Appl. 2021;127: 112190.

    CAS 
    PubMed 

    Google Scholar
     

  • 261.

    Xiao D, et al. Tetrahedral framework nucleic acids loaded with aptamer AS1411 for siRNA supply and gene silencing in malignant melanoma. ACS Appl Mater Interfaces. 2021;13(5):6109–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 262.

    Wang H, et al. A magnetic T7 peptide&AS1411 aptamer-modified microemulsion for triple glioma-targeted supply of shikonin and docetaxel. J Pharm Sci. 2021;110(8):2946–54.

    CAS 
    PubMed 

    Google Scholar
     

  • 263.

    Dai L, et al. Aptamer-conjugated mesoporous polydopamine for docetaxel focused supply and synergistic photothermal remedy of prostate most cancers. Cell Prolif. 2021;54: e13130.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 264.

    Liu Y, et al. Dynamics of delivering aptamer focused nano-drugs into cells. J Mater Chem B. 2021;9(4):952–7.

    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Previous Article

    Cuttlefish AUV pivots underwater to turn into a manipulator-armed ROV

    Next Article

    The Most Distinctive Snowflake - Cloudera Weblog

    Write a Comment

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Subscribe to our Newsletter

    Subscribe to our email newsletter to get the latest posts delivered right to your email.
    Pure inspiration, zero spam ✨